
BGPmon: A real-time, scalable, extensible monitoring system

He Yan
Colorado State University
yanhe@cs.colostate.edu

Ricardo Oliveira
UCLA

rveloso@cs.ucla.edu

Kevin Burnett
Colorado State University
burnet@cs.colostate.edu

Dave Matthews
Colorado State University

dvmtthws@cs.colostate.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

Dan Massey
Colorado State University
massey@cs.colostate.edu

Abstract

This paper presents a new system, called BGPmon, for
monitoring the Border Gateway Protocol (BGP). BGP is the
routing protocol for the global Internet. Monitoring BGP is
important for both operations and research; a number of
public and private BGP monitors are deployed and widely
used. These existing monitors typically collect data using
a full implementation of a BGP router. In contrast, BGP-
mon eliminates the unnecessary functions of route selection
and data forwarding to focus solely on the monitoring func-
tion. BGPmon uses a publish/subscribe overlay network
to provide real-time access to vast numbers of peers and
clients. All routing events are consolidated into a single
XML stream. XML allows us to add additional features such
as labeling updates to allow easy identification of useful
data by clients. Clients subscribe to BGPmon and receive
the XML stream, performing tasks such as archiving, filter-
ing, or real-time data analysis. BGPmon enables scalable
real-time monitoring data distribution by allowing monitors
to peer with each other and form an overlay network to pro-
vide new services and features without modifying the mon-
itors. We illustrate the effectiveness of the BGPmon data
using the Cyclops route monitoring system.

1. Introduction

Understanding global routing is critically important for
current Internet research and operational network security.
The existing Internet uses BGP[3] as its global routing
protocol, but research challenges related to BGP are well
known. Security remains an open challenge and is the
subject of active research[15], routing convergence prob-
lems have been identified and various solutions have been
proposed[13, 8], the research community is actively work-
ing on understanding the impact of routing policies[11, 10],

and efforts on next generation designs[14] have been mo-
tivated by problems experienced in the current system and
are often evaluated using data drawn from the operational
Internet. The BGP monitoring data supports a wide range of
efforts ranging from understanding the Internet topology to
building more accurate simulations for network protocols.

To truly understand and properly analyze the global rout-
ing system, one needs to collect BGP data from a wide
range of sites with different geographical locations and dif-
ferent types (tiers) of ISPs. Fortunately global routing mon-
itoring projects, such as Oregon RouteViews[7] and RIPE
RIS[6], have been providing this essential data to both the
operations and research communities. Google Scholar lists
hundreds of papers whose results are based on these mon-
itoring resources. Results on route damping, route conver-
gence, routing policies, Internet topologies, routing secu-
rity, routing protocol design, and so forth have all benefited
from this data. Clearly, these monitoring projects are very
useful.

However, experience over the years has also shown a
number of major limitations in the current BGP data col-
lection process. An ideal monitoring system would scale
to a vast numbers of peer routers and provide BGP data in
real-time to an even larger number of clients. For example,
one might like to add operational routers from different ge-
ographic locations and lower tier ISPs. At the same time,
real-time access would enable all interested parties to ana-
lyze the data to detect events such as fiber cuts, prefix hi-
jacks, and so forth. The monitoring system should also re-
flect the fact that BGP is still evolving and the system should
be easily extended to handle new BGP extensions, such as
the expansion to four byte AS numbers, new security mea-
sures, and any number of current or future extensions to the
protocol.

This paper presents the design and implementation of
a next generation BGP monitoring system. We propose a
mesh of interconnected data collectors and data brokers that



operate using a publish/subscribe model. Our approach ex-
tends the scalable event driven architecture[17] to meet the
requirements of BGP monitoring. Interested clients receive
an event stream in real-time or may read historical event
streams from archival sources. The event streams provide
both incremental BGP update messages and periodic rout-
ing table snapshots. We use XML to provide extensibility,
integration with common tools, and to allow local data an-
notations.

Using data from BGPmon, one can solve a wide range
of critical problems. As an example we present the Cy-
clops system[9] (http:.//cyclops.cs.ucla.edu). Cyclops was
designed to be a generic framework that would compare the
intended behavior of the network with the observed behav-
ior. The intended behavior can either be explicitly entered
by the user or statistically inferred. Network operators are
automatically alerted (e.g. by email or sms) anytime there
is a change in the network that deviates from the expected
behavior. In particular, one could use the underlying BGP-
mon data to detect and immediately report BGP prefix hi-
jacking events. Tools such as Cyclops can benefit greatly
from BGPmon since it can easily scale up the number of
BGP feeds; adding locations where RouteViews and RIPE
do not have a presence. Furthermore, BGPmon eliminates
the delay involved in receiving the feeds since they can be
provided in real time.

The paper is organized as follows. Section 2 reviews the
current state of BGP route monitoring and section 3 intro-
duces our new approach. Section 4 describes how our de-
sign “scales up” to meet both peer and client demands while
section 5 shows how our approach “scales out” using a pub-
lish/subscribe overlay network. Section 6 shows some early
results from deployment and section 7 shows how Cyclops
makes use of BGPmon data. Finally, Section 8 concludes
the paper.

2. Background

Before introducing our new BGP Monitoring system,
we will first review the basic concepts used by public data
collection sites such as Oregon RouteViews[7] and RIPE
RIS[6]. The objective of these sites is to provide interested
researchers and operators with access to the updates sent by
routers at various ISPs and to also provide periodic snap-
shots of the corresponding BGP routing tables. To accom-
plish this, the current monitoring system negotiates BGP
peering agreements with ISPs and deploys one or more col-
lectors to obtain the BGP data. To the ISP routers being
monitored, a collector is simply another BGP peer router.
The collector receives and logs the BGP messages received
from the ISP router being monitored. The heart of the sys-
tem is the data collectors. A collector may be a simple unix
machine running an open source routing toolkit. The col-

lector simply writes all received updates to a file in Multi-
threaded Routing Toolkit (MRT)[4] format and then the file
is made publicly available. Applications can read the MRT
formatted file directly or first convert the binary format to
text using tools such as bdpdump[2].

In addition to providing update logs, monitors also pro-
vide snapshots of the resulting BGP routing table, referred
to as RIBs. The collector builds a RIB table by applying
the standard BGP protocol rules. A BGP update may add a
route to the RIB table, remove a route from the RIB table, or
modify an existing route. Whenever an update is received,
the RIB table is modified accordingly. As updates are re-
ceived from a peer, the collector updates the routing table
for that peer and periodically writes it to disk in MRT for-
mat. RIB files provide a snapshot of the routing tables over
a very short interval while the udpates provide a stream of
changes that occur between the rib file snapshots. Together,
the RIB and update files provide the ability to rebuild the
state of the routes at a particular time and replay subsequent
changes to the routing infrastructure for analysis.

Currently, RouteViews provides update files that are
roughly 15 minutes in duration and provides routing table
snapshots roughly every 2 hours. This is sufficient for anal-
ysis of past events, but real-time monitoring of BGP activity
requires update files be available in seconds. For example,
current BGP prefix hijack alert systems would like to detect
a potential route hijack within a few seconds. At best, to-
day’s RouteViews system only allows hijack alert systems
to report hijacks that occurred many minutes ago.

In addition to providing data in real-time, an ideal BGP
monitoring system would scale to dramatically increase the
number of peers providing data. Given data from more lo-
cations, BGP analysis systems and tools could potentially
provide better answers. For example, a BGP prefix hijack
may only be visible in a small portion of the network and
ideally one would like to have a monitor present in that same
portion of the network. Thus our goal is not only to make
the data available in real-time, but also to dramatically in-
crease the volume of data available.

Finally, such an ideal system could attract a large num-
ber of new applications. The data is public and should be
available to any interested researcher or operator. In many
cases, the data collected by RouteViews can serve as one
input to monitoring systems throughout the network.

In summary, the current system is useful but it would
be useful to make the data available in real-time while si-
multaneously increasing the amount of data collected and
dramatically increasing the number of locations obtaining
the data. All this should occur without lose of data fidelity.



Figure 1. Physical view of publish/subscribe
overlay network.

3. A New Monitoring System

Open source routing software that is currently used as
a collector typically implements a full routing protocol, in-
cluding receiving routes, applying policies, setting forward-
ing states, and announcing routes to peers. Applying po-
lices, setting forwarding states, and announcing routes to
peers involve considerable complexity, but none of these
actions are needed be collector. A collector simply needs
to receive and log routes. Our new collector design focuses
on a narrow set of data collection functions. By focusing
on the collection functionality and eliminating unnecessary
tasks, the new collector is able to scale up and support more
peer routers while making the data available in real-time to
a potentially vast number of clients.

To support hundreds of peer routers and thousands of
clients, one would like to scale out across multiple systems
by adding more collectors and distributing the services. At
the same time, a client should see a single monitoring ser-
vice and be unaware that the implementation of the service
may be done through multiple collectors.

Our approach is based on publish/subscribe overlay net-
works that consist of brokers, publishers, and subscribers as
shown in Figure 1. The brokers form the overlay network,
allowing publishers to send event streams to the overlay
network and allowing subscribers to receive event streams
from the overlay network. Publishers and subscribers in-
teract only with brokers, not with each other, allowing the
overlay network to insulate publishers and subscribers from
each other. The brokers manage the distribution of the event
streams based on the client subscriptions, identifying the
best path from the publisher to the subscriber. Services,
such as filtering, aggregation, and querying, are typically
performed by the brokers on behalf of the subscribers.

BGPmon publishes an event stream containing data
while applications subscribe to these streams based on at-

tributes of the data in the streams. These streams will in-
clude all BGP messages (open, close, update, notification,
keepalive, route-refresh) as well as state changes in the BGP
Finite State Machine (FSM). An application may subscribe
to all events or only a subset of events based on peer, au-
tonomous sytems, events type, or other information con-
tained in the data. To improve fault tolerance, multiple
brokers may monitor the same or different peers in an AS,
yet appear to a client application as a single subscription.
This allows critical applications to continue to receive event
streams in the case of a failure of a peer, monitor, or broker.

Our system implementation begins with BGPmon, a
simple monitoring system now available that incorporates
all three functions: publish, broker, and subscribe. The sec-
ond stage is BGPbroker which separates these functions to
support Internet scale and additional services.

4. Scaling Up: BGPmon

The BGPmon architecture shown in Figure 2 reflects a
real-time monitor capable of scaling up and out. The de-
sign makes use of threading to provide real-time support
and scales up the number of peers and clients supported by
the monitor. BGPmon uses a lightweight thread for each
peer and client connection. In addition, there are threads
for chains to other instances of BGPmon, and some internal
functions, such as labelling and XML conversion. The use
of threads takes advantage of the trend towards multicore
processors.

BGPmon creates a peer thread for each peer router
and places all BGP messages (Open, Update, Notification,
Keepalive, Route-refresh) in the peer queue to create a sin-
gle, consolidated stream of events. The peer thread detects
loss of connection and automatically initiates recovery of
the connection. In addition, all changes in the BGP FSM
are placed in the peer queue. The peer thread uses MD5
authentication for the router connection if configured.

A label thread processes the events from the peer queue
and maintains a RIBIN table which contains unprocessed
routing information advertised by peers. This thread deter-
mines label information based on the state of the RIBIN ta-
bles, and places the event and corresponding label in the la-
bel queue. The labels identify announcements, withdrawals,
new updates, duplicate updates, same path, and different
path to aid filtering and analysis [16]. Since the RIBIN ta-
bles are the major memory constraint for the system, label-
ing is an optional feature and when turned off, the memory
used by BGPmon drastically decreases.

Finally, the monitor thread periodically issues status in-
formation and injects route tables into the event stream.
Route tables are obtained directly from the peer router by
requesting a route refresh. The RIBIN table can be used to
simulate a route refresh if the peer does not support it.



Figure 2. BGPmon architecture.

The XML thread processes events in the label queue,
converts them to XML then places them into the XML
queue. Events from another BGPmon instance can be ag-
gregated into the XML queue to form BGPmon meshes,
discussed later in the paper. Each client thread sends the
entire stream of events from the XML queue to the client.

4.1. XML Event Stream

BGPmon can provide a real-time event stream to a large
number of clients. XML was chosen as the message format
for the even stream because it is extendable, for both clients
and servers, and also readable by both applications and hu-
mans. Also, XML allows BGPBrokers to route, filter, and
aggregate events use XPath queries.

However, to scale to the demand for a large number of
clients, there is no provision for a single client to request a
table transfer from BGPmon. Instead, when a route-refresh
is triggered by the router, BGPmon will incorporate the
transfer directly into the event stream. Real-time applica-
tions must operate on partial information (without RIB in-
formation) until the route-refresh is initiated from a router
in the event stream.

Several example clients that can make use of the XML
event stream are different types of archivers. A simple log
client can receive the event stream then write it directly to
disk while a more complex log client can filter the XML
messages then write them to disk. Another example of a
client is one that can convert the XML messages back into
MRT format and produce MRT formatted update files and
rib tables.

One concern with XML is the space required to store
the log files. Table 1 shows the space requirements of a

Table 1. Space requirements for text and
compressed data. Ratios relative to MRT for-
mat.

Format Data Size Ratio Compressed Ratio
MRT 26711666 1.00 5614650 1.00
bgpdump 74551628 2.79 5645044 1.01
XML 264824363 9.91 13445451 2.39
XML- 218065044 8.16 6289003 1.12

sample log for a two hour period. MRT data is stored in bi-
nary format, adding only some additional header informa-
tion to each update. The bgpdump [2] tool converts MRT
into ASCII, increasing the size to 2.79 times the MRT sam-
ple. Our XML log includes the packet octets as well as the
XML tags and is 9.91 times the MRT size. Eliminating the
octets (line XML- in the Table), reduces the ratio to 8.16.
However, most data is stored in a compressed format and
after compressing the files using bzip2, the compressed log
with octets is 2.39 times MRT and without octets is 1.12
times the MRT size.

4.2. Stream controller

BGPmon uses a design similar to the Staged Event
Driven Architecture (SEDA)[17]. SEDA provides a reli-
able service that handles a large number of concurrent peers
and clients. It divides the processing into stages connected
via queues. And the resource controller is used to observe
the incoming and/or outgoing rates of queues and adjust the
queue length as needed.

As Figure 2 shows, in BGPmon the event stream flows



from peers to clients through three queues. The main dif-
ference between our design and SEDA is that all the queues
in BGPmon have a fixed length. So the key challenge in the
design of BGPmon is to prevent fixed-length queues being
overwhelmed while supporting many peers and clients with
different writing/reading rates. For example, large spikes in
the event stream will overwhelm the queues when the en-
tire routing table is sent. The worst case will happen when
BGPmon starts and all peers send their routing tables si-
multaneously. Route refreshes and other major changes in
topology can also cause significant spikes. A similar situa-
tion can also occur when a slower client is unable to process
events in a timely fashion.

In BGPmon, data is added to the queue by writers and
removed only after all readers have accessed the data. The
writers, which are typically BGP routers, send data accord-
ing to BGP protocol standards. The number of messages
sent by writers is primarily a function of the number of route
changes seen by a peer. At the same time, readers read
data from the queue at varying speeds due to bandwidth
or processing constraints. BGPmon employs two mecha-
nisms that are designed to handle the varying read and write
speeds of the clients and peers.

Pacing writers: The queue paces the writers according
to the average reading rate across all readers. When a queue
length exceeds a configurable threshold, pacing is enabled
until the queue length drops below a second threshold. For
example if the queue length is larger than the pacing enable
threshold, pacing will be enabled. When the system is in
pacing mode it will ensure that no writer can be starved of
resources and may limit the speed at which particular writ-
ers add to the queue.

For example, suppose there are 4 readers and 2 writers
and on average each reader can read 8 messages per second.
Ideal pacing should limit the writing rate of each writer to
8/2 = 4 in order to avoid overwhelming the queue. Our
approach ensures that each writer can add 4 messages per
second and limits writers to 4 messages only if the queue
size is growing too rapidly.

In BGP terms, this may mean BGP updates are read at
a slower rate if the queues are filling too fast. In turn, this
will apply back pressure on the TCP connection between
the peer and BGPmon. If BGPmon does not read data then
the TCP buffers fill and eventually new data cannot be sent
which causes the peer router to delay updates. Ultimately,
if the delay is too long then the peer may terminate the con-
nection with BGPmon. For example, the peer will close the
connection if keepalive messages cannot be exchanged at
a sufficient rate. Our objective is not to permanently limit
the connection, but rather to survive bursts of data. We do
this by using a large queue and by pacing how fast the peers
write.

Dropping slow readers: In the case of a very slow reader,

the queue length may continue grow despite our attempt to
pace writers to the average reader. Ultimately, if writers
add data faster than the slowest reader can consume it, any
queue must eventually fill up. In this case, the readers are
simply too slow and our system detects and eliminates these
slow readers. When the queue length reaches the maximum,
the responsible reader is dropped and the queue is adjusted
to the next slowest reader. This allows the remainder of
the subscribers to continue processing the stream with no
dropped events.

For example, suppose the queue is almost full and again
there are 4 readers and 2 writers. Suppose also that 3 of the
4 readers can read 8 messages per second but one of them
can only read 2 message per second. Data is only removed
from the queue after the all readers have accessed the data
so only 2 messages are removed from the queue per second.
As a result, the average reading rate across the 4 readers is
6.5 messages per second. In this case, even pacing is turned
on and each writer is limit to write 6.5/2 = 3.25 messages
per second the queue will still be overwhelmed because of
the slow reader. When the queue nears capacity, the slowest
reader (2 messages per second) is disconnected.

This deletion has two important effects. First, the queue
size drops immediately. At least one item in the queue is
present only because the slowest reader has yet to read that
item. When the slowest reader is deleted, the oldest queue
item also becomes read by all readers and is deleted, freeing
at least one spot in the queue. If there are multiple equally
slow readers, all of them are dropped to ensure some space
is freed in the queue. Second, the remaining readers can
process the data, possibly at a faster average rate.

Our experiment shows that pacing slows the rate at
which BGP messages are read from the peer routers, but
the connections are not dropped since the admission rate is
still well above the keepalive and hold timers in the BGP
sessions. Our system survives bursts in updates in has
not dropped a connection in several months despite a wide
range of reader speeds.

5. Scaling Out: Chains and Brokers

While we have endeavored to design a BGPmon that
scales to a large number of peers and clients, we allow BGP-
mon to scale out through the interconnection of multiple
BGPmons. This allows the separation of the peer monitor
from the client server with only a single connection main-
tained between them. A mesh of BGPmons may be used
for redundancy as shown in Figure 3. Both BGPmon C
instances monitor a unique set of peers and forward their
events to both BGPmon S instances. Each BGPmon S will
then log the event stream and forward their events to any
clients attached.

The use of separate monitors helps insulate the monitor-



Figure 3. BGPmon mesh configuration to pro-
vide redundancy and scale.

ing, logging, and clients from individual failures. Failure of
a BGPmon only affects the connected peers or clients. The
other peers and clients in the mesh are not affected. Recov-
ery is automatic since the failed BGPmon reconnects to the
mesh when it recovers.

BGPbroker is the second stage of development to pro-
vide an overlay network that will support Internet scale and
service extensions. Unlike BGPmons which simply collect
and stream data, BGPbrokers provide a set of services for
filtering and aggregation, allowing clients to subscribe to
non-duplicate requests from a peer or to subscribe to an
autonomous system that aggregates all of the appropriate
peers. A BGPmon (or mesh of BGPmons) becomes a ser-
vice to the broker in this model and provides the base data.

This powerful abstraction allows sites to design networks
of brokers to provide a wide range of new services. For ex-
ample, logging/playback services could allow applications
to access archives through the subscription mechanism by
specifying a time period in the subscription. A hybrid ser-
vice could allow playback from a specific point that tran-
sitions into the current real-time feed. Other services may
add additional information to suspect events in the stream,
such as potential prefix hijacks or other security issues.

6. Deployment Results

This paper introduces a new BGP monitoring system that
supports real-time monitoring, scalability, and extensibil-
ity. The system uses a publish/subscribe overlay network

Figure 4. BGPmon testbed.

involving brokers, publishers, and subscribers to achieve
these goals.

In order to deploy, debug, and evaluate BGPmon, a
testbed has been in operation for roughly one year. This
testbed involves 5 peers and 3 BGPmon sites is shown in
Figure 4. In the Colorado State University (ColoState)
site, BGPmon1 connects to 1 peer, BGPmon2 connects to
4 peers. These instances of BGPmon are then chained to-
gether. Recently, undergraduate course projects have ex-
perimented with clients connecting to BGPmon while other
testing has shown that BGPmon can run smoothly with a
varied client load from 1 to 200.

UCLA has its own local BGPmon which chains to BGP-
mon2 inside the ColoState site. Inside the UCLA site, the
application Cyclops is integrating BGPmon data into its
system. Cyclops will be discussed in detail in section 7.

Similarly, the University of Memphis site also runs its
own BGPmon and chains their own BGPmon to BGPmon2.
They also have a application Netviews[5] which is fed data
by from their local BGPmon. Netviews provides a new vi-
sual interpretation of BGP data which network operators
can quickly understand and analyze their own and others
connectivity across the globe.

BGPmon provides raw data to clients such as Cyclops
and NetViews. The only message processing that occurs in
BGPmon is in the labeling system. By comparing a new
update for a prefix to the last update for the same prefix re-
ceived from the same peer, BGPmon labels updates as fol-
lows. If the peer is not currently announcing a route to a
prefix and then a route to the prefix is reported, the update is
labeled as a new announcement. Similarly if the peer is cur-
rently announcing a route to the prefix and then withdraws
the route, the update is labeled as a withdraw. If a peer is
currently announcing a route to a prefix and then changes
the route to that prefix, BGPmon classifies the update as a
DPATH update for different AS path or SPATH update if the
path remains the same but some other attribute has changed.

In addition to the above, a peer may simply readvertise
the exact same route to a prefix. This is labeled a duplicate
update. In our system, duplicate updates are often the result



Figure 5. BGPmon peer statistics.

of a request for routing table transfer. BGPmon periodically
asks a peer to re-report all of its routes. This generates a
large number of duplicate updates, but allows downstream
BGPbrokers and clients to learn the full table of peer and/or
synchronize any state associated with data from that peer.
BGP routers may also withdraw the route to the prefix that
has not been advertised in the first place. These duplicate
withdraws are typically the result of bugs or sub-optimal
implementation decisions at peer routers.

Overall, these labels can help clients or BGPbrokers
quickly parse the vast number of updates. For example,
tools such as Cyclops and prefix hijack detectors are pri-
marily concerned with new announcements and DPATH up-
dates. These tools can typically ignore the duplicate an-
nouncements, SPATH updates, and duplicate withdraws.

Figure 5 show the distribution of update messages re-
ceived from a single peer. Each line represents one of the
labels applied to the updates. As discussed above, the large
number of duplicate announcements results from updates in
the stream generated by the route refresh. Graphs for each
peer are available at the BGPmon website[1] and are up-
dated periodically.

Queue statistics in Figure 6 show the size of the peer,
label, and XML queues.

Spikes typically occur during a route refresh. Pacing
statistics in Figure 7 show the pacing limit, a weighted mov-
ing average, and the number of times pacing was enabled
during the period. Queue and pacing parameters can be al-
tered to change the size of the queue and the points at which
pacing is turned on or off. This allows us to tune a monitor
to the load generated by the peers and clients.

7. A BGPmon Client: Cyclops

Cyclops is a generic framework for routing monitoring
that compares the intended behavior of the network with

Figure 6. BGPmon queues.

Figure 7. BGPmon queue pacing.

BGP
data

Pre-processing

Cyclops DB

Topology
& weight

files

Visualizer Web
Interface

Raw
data

AS relationship
inference & 

AS classification

Alarm
generation
• weight
• lifetime
• PV-GT

…

Figure 8. Cyclops implementation block dia-
gram



the observed behavior. The intended behavior can either be
explicitly entered by the user or statistically inferred. Net-
work operators are automatically alerted (e.g. by email or
sms) anytime there’s a change in the network that deviates
from the expected behavior.

Currently Cyclops data is updated once a day, which is
not fast enough to react to network anomalies such as prefix
hijacks. Cyclops is currently being integrated with BGP-
mon so that it benefits from access to real-time BGP data.
For example, observed data may trigger a routing security
event that will be perceived within few seconds, rather than
minutes or hours.

7.1. An overview of Cyclops

Figure 8 summarizes the Cyclops implementation. Daily
collected BGP data from the Public-View first goes through
a pre-processing stage where AS links and timestamps are
extracted. More precisely, for each AS link in an AS path,
we record the first and last times the link was seen, and
whether the link was seen in the beginning, middle or end of
the AS path. In addition, we save the last seen BGP update
message that contained that link.

In the pre-processing stage, we also glean AS paths to
infer business relationships between ASes, i.e. provider-
customer, or peer-to-peer, and this relationship information
is then used to do AS classification. The specific method
we use to do AS relationship inference is deceptively sim-
ple. We extract the AS links from the BGP routes collected
from the Tier-1 ISP monitors over a window of time which
should span several months. In the AS path a0–a1– ... –an,
the link a0–a1 can be either peer-peer or provider-customer
(a0 refers to the Tier-1 AS the monitor resides in), but the
remaining links in the AS path should be of type customer-
provider according to no-valley policy. Furthermore, if a0–
a1 turns out to be a customer-provider link, it will be re-
vealed in routes of another Tier-1 AS, therefore we will be
able to accurately label it. The peer links are inferred by do-
ing the diff between the entire set of links extracted from all
the monitors and the set of customer-provider links, i.e. the
peer links are all the links that are not propagated upstream
to Tier-1s. In addition, we sort ASes into four classes based
on the number of downstream customer ASes: stubs if they
have 4 or less downstream ASes, small ISPs if they have be-
tween 5 and 50 downstreams, large ISPs if they have more
than 50 downstreams, and finally Tier-1 ASes.

To measure how much an AS link is used, we keep
track of the number of BGP routes carried on each AS
link. We call this number the link weight, a concept bor-
rowed from our previous work [12]. To avoid measurement
bias, the link weight measurement only uses data from the
N ' 120 monitors in Public-View that provide full BGP
tables and reside in different ASes. We denote wj

i (t) the

number of routes of monitor j that use link i on day t, and
wi(t) = 1

N

∑
j w

j
i (t) the average weight of link i over all

the N monitors. We further compute an expected weight
of each link over time using a TCP RTT measurement-like
smoothed average: ŵi(t) = 0.8ŵi(t − 1) + 0.2wi(t), and
keep track of the difference between the instantaneous link
weight on day t and the expected weight of each link i:
∆wi(t) = wi(t) − ŵi(t). A significant difference can be
used to trigger alarms. Furthermore, we keep track of two
different weights depending on the position of the eye of the
Cyclops in the AS link seen in the routes. wto represents the
number of routes using the link x–y, where x is the eye of
the cyclops and y one of its neighbors; wfrom represents
the weight of the link y–x, towards the eye of the Cyclops
x. Usually for stub networks, Cyclops only displays the
values wfrom, since we would need a monitor at the stub
to capture the other direction. Keeping both directions is
important because it gives perspective on how the Cyclops
eye slices routing through its neighbors, as well as how its
neighbors point routes towards it.

All the above mentioned information, the AS links, the
last BGP update reporting each link, the link weights, as
well as the AS relationships and classification, is imported
to the main Cyclops database on a daily basis to provide
input into Cyclops.

7.2 Cyclops Web Interface

Cyclops web interface is designed to provide users a
quick snapshot of AS connectivity surrounding the eye of
the Cyclops, a given AS-x, within a given time window.
It also complements Cyclops visualizer in scaling the topol-
ogy display by allowing one to view a complete list of all the
neighbors of large ISP ASes whose neighbor counts may go
as high as thousands which makes visualization infeasible.
The inputs to the web interface include the eye of the Cy-
clops, AS-x, the time period [t0, t1] of interest, and a choice
between showing all neighbor ASes and showing the con-
nectivity changes only. In connectivity mode, a snapshot of
the neighbors of x at time t1 is displayed in the table. In
change-only mode, all topology changes incident to x that
occurred in the interval [t0, t1] are displayed; the changes
include both new AS links and disappeared AS links.

As an example, Figure 9 shows the Cyclops web user
interface, together with the connectivity listing for AS174
(Cogent, an ISP). The table includes information for each
neighbor of AS174, such as ASN, AS name, AS type (stub,
small ISP, large ISP, Tier-1), number of downstream ASes
within ()’s, relationship with x (customer, provider, peer),
node degree, link appearance and disappearance date, link
lifetime, link weight, and last BGP message observed which
contained the link1. The ”Weight (to)” column shows the

1The value shown in the ”Last BGP Message” column is the prefix in



link weight in the direction of AS174 to neighbor AS; the
”Weight (from)” column shows the link weight seen in the
direction from neighbor AS to AS174. To fill in the ”Weight
(from)” column for a neighbor requires a monitor being
hosted in that neighbor AS. The Avg. value is the expected
weight as described in Section 7.1; the Diff. value is the per-
centage of difference between the link weight on the ”End
Date” and the expected weight.

The neighbor listing shown in Figure 9 is in the order of
the node degree (the number of connections each neighbor
AS has); one can click on any other parameter to order the
neighbor list by the values of that specific parameter. For
example, if one wants to know whether the AS is involved
in any route hijack, one can sort the list by link lifetime and
see the AS links with shortest lifetime on the top. The last
BGP message informs the user who originated the BGP up-
date message that caused the links to appear. Other columns
in the table help users observe neighbors by degrees, rela-
tionship or AS types.

Figure 10 shows AS-174 connectivity in change-only
mode, where all topology changes incident to AS-174 that
occurred in the time interval [t0, t1] are displayed. In
this specific case, 18 links changed during the period of
[5/23/08, 5/29/08] (the table is truncated due to space limit).
The first row shows a link that disappeared since 5/25/08
with a lifetime of 947 days; the eighth row shows a new
link to AS10279 that was added on 5/27/08. Note that the
”Weight (from)” column shows no value, this is because
there is no monitor inside any of those neighbor ASes.

7.3. Cyclops and BGPmon

The system above illustrates the potential for BGPmon
data. BGPmon provides the raw data used by Cyclops. By
delivering data from more peers, clients such as Cyclops
can offer better analysis and improved inference. By deliv-
ering data in real-time, BGPmon allows Cyclops to report
potential problems and attacks in real-time. Finally, by scal-
ing to vast numbers of clients, BGPmon is not restricted to
Cyclops alone. Any number of other services can obtain the
same raw data.

As the BGPmon system matures, we anticipate a large
mesh of BGPmon collectors and BGPmon chains. Large
numbers of peers connect directly to one or more BGPmon
collectors. The collectors in turn establish chains to other
BGPmon instances and clients then connect to one of these
instances. By providing a robust mesh, BGPmon instances
can provide data from large numbers of peer routers and
serve a large number of clients.

BGPmon intentionally does not process data. BGPmon
instances simply collect and report data. But one can clearly

that update, embedding a hyperlink to the message.

envision scenarios where more robust data processing is re-
quired. BGPbrokers take this raw data as input and provide
filtered output. For example, a BGPbroker might pass only
BGP path changes to a client and filter out all other data
such as keepalive messages and duplicate route announce-
ments. Cyclops may one day receive BGP data from just
such a BGPbroker. Cyclops primarily requires path changes
and thus a broker that filters out all updates other than path
changes could simplify the processing for Cyclops.

The distinction between a BGPbroker and client is some
arbitrary. To a BGPmon instance, the distinction is irrev-
elant. BGPmon simply provides unfiltered data via a TCP
stream. This data may be fed directly to a tool such as Cy-
clops or may be fed a collection of BGPbrokers which pro-
vide filtered data to tools such as Cyclops. Finally, Cyclops
itself may be viewed as a broker in the sense that it filters
BGP and reports only events that deviate from the expected
behavior.

8. Conclusions and Future Work

This paper presented the design of a new BGP monitor-
ing system and showed how clients such as Cyclops can
make use of the resulting data to better understand BGP be-
havior.

Based on discussions and user feedback, we are very en-
couraged by the deployment thus far. We have also learned
a few critical lessons that have influenced the next release of
BGPmon, BGPmon version 7. Chief among these lessons
are a revised approach to handling slow clients, a revised ap-
proach to managing routing tables, and a new addition for
integrating BGPmon into existing systems such as Route-
Views. Each of these version 7 enhancements is discussed
below.

8.1 BGPmon v7: Handling Slow Clients

Our current implementation of BGPmon (version 6)
drops slow clients, as described in Section 4. It is essen-
tial that some action be taken to address the problem of
slow clients. If no action is taken, a slow client can cause
the BGPmon queues to overflow and eventually data would
be dropped. This is particularly problematic if most clients
could read at a high rate and receive all the data, but a few
slow clients fill the queues and cause data loss. In BGPmon
version 6, our solution is to identify and then terminate the
slow clients. This has worked well in the deployment thus
far.

However, a potential problem is that the slow client may
simply re-connect and thus drive the overall system into a
state of persistent oscillation. The system runs well until
the slow client joins. The slow client then causes queues
to build up and the client is eventually killed. The queue



Figure 9. A snapshot of Cyclops web interface: connectivity of AS174.

Figure 10. AS174 connectivity changes during the period of [5/23/08, 5/29/08].



then quickly drains when the slow client is killed. Note that
the queue contains at least one update that has been read
by everyone except the slow client. When the slow client
is killed, that update can be discarded. In our experiments
thus far, a typical slow client has hundreds of updates that
are waiting only for the slow client; killing the slow client
immediately removes these updates and frees hundreds of
slots in the queue. But oscillation occurs if the slow client
immediately connects. The queue of unread updates begins
to build again as soon as the slow client joins and the cycle
repeats. One can easily imagine a poorly written slow client
that automatically reconnects anytime it is disconnected.

An alternate approach is to better manage, but not kill the
slow clients. In BGPmon version 7, the slow client is not
deleted from the system. Instead, slow clients are forced to
skip messages. From a queuing standpoint, the effect is sim-
ilar to killing the slow client and works as follows. When
BGPmon determines a client is reading updates too slowly,
all messages that have yet to be read by that slow client are
immediately marked as read. The client is informed it has
missed several messages, but it is allowed to continue. If
the message loss is unacceptable to the client, we leave it to
the client to terminate the connection.

For example, suppose 100 messages have been read by
everyone except a slow client. Rather than waiting for the
slow client to read the 100 messages, the client is sent
an XML message indicating that 100 messages will be
skipped. All 100 unread messages that are waiting only on
the slow client are immediately marked as read and removed
from the queue.

The same pacing rules discussed for killing clients apply
to skipping clients forward. The algorithm works exactly as
described in Section 4, but rather than terminating the TCP
connection BGPmon instead skips the client forward. A
command line interface allows the BGPmon administrator
to set minimum client rates. The BGPmon administrator
can also terminate clients that fall behind too often, but this
now becomes a decision by an administrator rather than an
automated behavior.

8.2 BGPmon v7: Sending Routing Tables

BGPmon version 6 sends both incremental updates and
periodic RIB table transfers in the same XML stream. The
periodic table transfers are added to the stream using the
BGP Route Refresh capability. This works as follows. At
periodic intervals, BGPmon sends a route refresh request
the ISP router. In response to the request, the ISP router
re-announces all routes in its table. This allows clients who
have recently joined the XML stream to learn the full table.
It also minimizes the possibility of monitoring errors since
the re-announced table comes directly from the ISP router.

However, periodic route refreshes have two major nega-

tive consequences. First, ISP routers may not be willing to
periodically resend the entire table. Sending a route refresh
requires processing and bandwidth from the ISP router. In
some cases, this added load may be considered too costly
for the ISP router. This problem is easily solved by storing
the routing table at BGPmon. Rather than requesting a ta-
ble from the peer, BGPmon simply re-announces its copy
of the routing table. No action by the peer router is re-
quired. In fact, the peer router is not aware that BGPmon
is re-announcing the table. All updates related to this BGP-
mon generated table transfer are clearly labeled so a client
can easily distinguish an actual update by the peer router
from a simulated table transfer generated by BGPmon. This
functionality already exists in BGPmon version 6 and we
believe this will become the standard way to periodically
re-announce the routing tables.

Second and perhaps more problematic, the re-announced
table is added to the XML stream and received by all clients.
This is desirable for new clients who would like to learn the
full table and may also be useful for existing clients who
want to refresh their state, but the re-announcement adds
a vast number of messages. Clients who do not want (or
need) a routing table are forced to receive and ignore pe-
riodic bursts of table transfer messages. Worse still, these
periodic bursts increase the number of updates by an order
of magnitude; a high price to pay if these updates are to be
simply ignored by many (if not most) clients.

Our solution in BGPmon version 7 is to introduce a sec-
ond XML stream. The first XML stream contains only
BGPmon updates. As updates are received from peer
routers, they are immediately added to this stream as dis-
cussed above. A new second XML stream will contain
only periodic routing table snapshots. The BGPmon ad-
ministrator (not the clients) chooses how often routing table
snapshots are announced via this stream. In this model, a
new client who wants both an initial table and incremen-
tal updates subscribes to both the standard update stream
and the periodic table stream. Once an table transfer is re-
ceived over the periodic table stream, the client can discon-
nect from this stream and receive only the BGP updates sent
in the first stream. Clients who do not want periodic table
transfers will not be subscribed to the periodic table transfer
stream and thus will not receive them. Clients who do seek
periodic table transfers can subscribe to this stream when-
ever a table transfer is needed. As with BGPmon version 6,
the clients who have subscribed to the stream must wait for
the next periodic transfer interval before the table transfer is
sent by BGPmon.

8.3 Integration With Existing Monitors

Along with the RouteViews team, our objective is to re-
place this routing software with BGPmon. However, the



transition can be challenging. Ideally, one would like to
gradually phase in the new BGPmon collectors before dis-
connecting the existing collectors. Existing collectors use
open source routing software and log updates to files. In
a transition to BGPmon, the monitored ISPs routers could
peer with both the existing collector and a new BGPmon
collector. But this places a burden on the monitored ISPs
to modify configuration files and adds additional load to the
production BGP routers being monitored. We instead have
developed an alternate incremental deployment plan.

In order to phase BGPmon in, we are working to modify
the existing collectors slightly so they feed updates to BGP-
mon rather than writing updates to files. An existing collec-
tor already writes BGP updates to a file. If one thinks of a
file as simply another stream, there is no conceptual reason
why these updates can’t be written to a stream and BGP-
mon could read from this stream. In other words, the ex-
isting collector opens the BGP connection to the ISP router
and begins receiving updates. Each update is written to a
stream instead of written to a file. BGPmon then processes
the update stream. Rather than directly receiving an update
from a peer, BGPmon indirectly receives the update via this
stream. BGPmon labels the updates, converts it to XML,
publishes to the event stream, and so forth. This allows us to
test BGPmon on the full RouteViews update load. The only
part of the BGPmon code not tested is the actually open-
ing on the peering session itself, which can be thoroughly
evaluated using other means.

Once BGPmon has proven itself handling the full Route-
Views update load, BGPmon can replace the existing open
source collection software. Note the ISP routers do not
know or care what underlying software is used to establish
and maintain a peering session. We believe this approach
will allow a rapid rollout of BGPmon into RouteViews and
provide a potential model for other monitoring sites to de-
ploy BGPmon.

Overall, we believe BGPmon represents an important
change in how BGP route monitoring is accomplished in
the Internet. We hope that the addition of BGPmon will
make it much simpler for researchers and operators to ob-
tain BGP data and the addition of widely available real-time
BGP data will lead to the development of new tools for bet-
ter understanding Internet routing.

9 Acknowledgments

Many of the design insights and current BGP peering
sessions would not have been possible without the help
of the Oregon RouteViews team, the UCLA Internet Re-
search Lab, and the Networking Research Lab at University
of Memphis, and the many contributors from the Colorado
State Network Security Group.

References

[1] Bgp monitoring system. http://bgpmon.netsec.
colostate.edu/index.html.

[2] bgptools. http://nms.lcs.mit.edu/software/
bgp/bgptools/.

[3] A border gateway protocol 4 (bgp-4). http://www.
ietf.org/rfc/rfc4271.txt.

[4] Mrt routing information export format. http:
//www.ietf.org/internet-drafts/
draft-ietf-grow-mrt-07.txt.

[5] Netviews. http://netlab.cs.memphis.edu/
projects_netviews.html.

[6] Ripe (rseaux ip europens) routing information service.
http://www.ripe.net/projects/ris/.

[7] University of oregon route views project. http://www.
routeviews.org/.

[8] A. Bremler-Barr, Y. Afek, and S. Schwarz. Improved
bgp convergence via ghost flushing. In INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE Com-
puter and Communications Societies. IEEE, 2003.

[9] Y.-J. Chi, R. Oliveira, and L. Zhang. Cyclops: The Inter-
net AS-level Observatory. In ACM SIGCOMM Computer
Communication Review, 2008.

[10] N. Feamster, R. Johari, and H. Balakrishnan. Implications of
autonomy for the expressiveness of policy routing. In SIG-
COMM ’05: Proceedings of the 2005 conference on Appli-
cations, technologies, architectures, and protocols for com-
puter communications, pages 25–36, New York, NY, USA,
2005. ACM.

[11] L. Gao. On inferring autonomous system relationships in
the internet. IEEE/ACM Trans. Netw., 9(6):733–745, 2001.

[12] M. Lad, R. Oliveira, D. Massey, and L. Zhang. Inferring the
Origin of Routing Changes using Link Weights. In Proc.
IEEE ICNP, 2007.

[13] D. Pei, M. Azuma, D. Massey, and L. Zhang. Bgp-rcn:
improving bgp convergence through root cause notification.
Comput. Netw. ISDN Syst., 48(2):175–194, 205.

[14] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao,
S. Shenker, and I. Stoica. Hlp: a next generation inter-
domain routing protocol. In SIGCOMM ’05: Proceedings
of the 2005 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pages
13–24, New York, NY, USA, 2005. ACM.

[15] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H.
Katz. Listen and whisper: security mechanisms for bgp. In
NSDI’04: Proceedings of the 1st conference on Symposium
on Networked Systems Design and Implementation, pages
10–10, Berkeley, CA, USA, 2004. USENIX Association.

[16] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin,
S. Wu, and L. Zhang. Observation and analysis of BGP
behavior under stress. Proceedings of the 2nd ACM SIG-
COMM Workshop on Internet measurment, pages 183–195,
2002.

[17] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture
for well-conditioned, scalable internet services. In SOSP
’01: Proceedings of the eighteenth ACM symposium on Op-
erating systems principles, pages 230–243, New York, NY,
USA, 2001. ACM.

http://bgpmon.netsec.colostate.edu/index.html
http://bgpmon.netsec.colostate.edu/index.html
http://nms.lcs.mit.edu/software/bgp/bgptools/
http://nms.lcs.mit.edu/software/bgp/bgptools/
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/internet-drafts/draft-ietf-grow-mrt-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-grow-mrt-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-grow-mrt-07.txt
http://netlab.cs.memphis.edu/projects_netviews.html
http://netlab.cs.memphis.edu/projects_netviews.html
http://www.ripe.net/projects/ris/
http://www.routeviews.org/
http://www.routeviews.org/

	. Introduction
	. Background
	. A New Monitoring System
	. Scaling Up: BGPmon
	. XML Event Stream
	. Stream controller

	. Scaling Out: Chains and Brokers
	. Deployment Results
	. A BGPmon Client: Cyclops
	. An overview of Cyclops
	Cyclops Web Interface
	. Cyclops and BGPmon

	. Conclusions and Future Work
	BGPmon v7: Handling Slow Clients
	BGPmon v7: Sending Routing Tables
	Integration With Existing Monitors

	Acknowledgments

