
BGPmon Version7

Implementation and Technical Specification

He Yan, Mikhail Strizhov, Kevin Burnett, Dave Matthews and Daniel Massey
Colorado State University

Computer Science Department
Fort Collins, Colorado, USA 80523

[yanhe,burnet,strizhov,dvmtthws,massey]@cs.colostate.edu

ABSTRACT
This paper describes the implementation and technical spec-
ification for BGPmon, a new BGP monitoring system. BGP-
mon uses a publish/subscribe approach to provide real-time
access to vast numbers of peers and clients. BGPmon scales
up by eliminating route selection, forwarding functions, and
routing table dumps to focus solely on the monitoring func-
tion. Using features such as route refresh, all events includ-
ing periodic table transfers are consolidated into a single
XML stream. XML allows us to add additional features such
as labeling updates to allow easy identification of useful data
by clients. Clients subscribe to BGPmon and receive the
XML stream, performing tasks such as archiving, filtering,
or real- time data analysis. This document captures the un-
derlying implementations decisions behind BGPmon. The
intended audience is a reader who wants to understand how
BGPmon was built and possibly enhance the design with
new features.

1. INTRODUCTION
To truly understand and properly analyze BGP rout-

ing, one needs data from a wide range of sites with dif-
ferent geographical locations and different types (tiers)
of ISPs. Fortunately global routing monitoring projects
such as Oregon RouteViews[6] and RIPE RIS[5] have
been providing this essential data to both operations
and research community. Google Scholar lists hundreds
of papers that cite these monitoring sources. Results
on route damping, route convergence, routing policies,
power-law topologies, routing security, routing protocol
design, and so forth have all benefited from this data.
Operational uses of the data range from analyzing the
impact of major events such as fiber cuts to detecting
prefix hijacks in real-time. All this work is possible be-
cause there are monitoring systems to collect and pub-
lish BGP data.

One can collect BGP data directly from a commer-
cial router (e.g. use commands such as show ip bgp) or
one can use open source routing toolkits to collect and
log data. However, experience over the years has also
shown there are major limitations in adopting tools not

specifically designed for the BGP data collection pro-
cess. An ideal monitoring system would scale to a vast
numbers of peer routers and provide BGP data in real-
time to an even larger number of clients. For example,
one might like to add peers from different geographic lo-
cations and lower tier ISPs. At the same time, real-time
access would enable new tools for analysis of events such
as fiber cuts, prefix hijacks, and so forth. The system
should also reflect the fact that BGP is still evolving
and the system should be easily extended to include
updates such as the expansion to four byte AS num-
bers, improved security for peering, and any number of
current or future extensions to the protocol.

This paper presents the implementation and speci-
fication of a next generation BGP monitoring system.
We propose a mesh of interconnected data collectors
and data brokers that operate using a publish/subscribe
model. Our approach extends the scalable event driven
architecture in [7] to meet the requirements of BGP
monitoring. Interested clients receive an event stream
in real-time or may read historical event streams from
archival sources. The single stream incorporates both
incremental BGP update messages and periodic routing
table snapshots. We use XML to provide easy extensi-
bility, integrate with common tools, and allow local data
annotations. The backbone of this system is BGPmon,
a scalable and extensible tool for collecting and publish-
ing BGP data.

Readers interested only in the overall BGPmon sys-
tem and general approach should refer to the techni-
cal paper[1] for an overview of the BGPmon system.
Readers interested only in installing, configuring, and
running BGPmon should refer to the BGPmon Admin-
istrators Reference Manual[2].

This paper describes the implementation of BGP-
mon. The objective is to document design decisions
and provide a detailed picture of how BGPmon is im-
plemented. The intended audience is a reader who is
interested in understanding the implementation details
of BGPmon and it is expected many readers will use this
document as a companion to the open source code. For

1

example, someone interested in adding a new feature
to BGPmon should consult this document along with
the source code in order to understand how the system
currently operates and where to make enhancements.

1.1 Document Overview
The sections in the remainder of this paper roughly

correspond to directories in the BGPmon source code
tree. Readers interested in modifying or understanding
portions of the BGPmon implementation do not need
to read the entire document. The discussion below de-
scribes which sections correspond to which functions
and recommends who should read a particular section.

Section 2 roughly corresponds to the main program(main.c)
which reads and saves the configuration, listens for sig-
nals, and is responsible for starting, stopping, and mon-
itoring all other modules’ threads. The overall architec-
ture of BGPmon is also discussed here. The section is
useful to most readers in order to broadly understand
the BGPmon implementation.

Section 3 roughly corresponds to the Configuration
directory in the source code. It provides facade func-
tions to read and save the configuration which are called
by main program and call the module specific read/save
functions . In addition, the Configuration directory
also provides the utility functions to parse the XML
configuration file to other modules. Programmers in-
terested in facade functions and XML utility functions
should read this section.

Section 4 roughly corresponds to the Peering direc-
tory in the source code and handles all functions related
to opening and maintaining sessions with BGP peers.
Programmers interested in adding new BGP capabil-
ities or modifying how peering sessions are managed
should read this section.

Section 5 roughly corresponds to the Mrt directory
in the source code and handles all functions related to
receiving and parsing MRT data.

Section 6 roughly corresponds to the Labeling direc-
tory in the source code and handles the optional storing
or RIBIN tables and the optional addition of labels to
BGP updates. Programmers interested in adding new
labels or annotations to BGP update messages should
read this section.

Section 7 roughly corresponds to the PeriodicEvents
directory in the source code and handles all actions re-
lated to periodic events. Periodic events include re-
questing a route refresh from a peer, announcing a RIBIN
table for peers that do not support route refresh, and
sending status messages regarding peers, queues and
chains. Generally speaking, this module generates every
message that is reported to clients but not exchanged
over a peering session. Programmers interested in adding
or modifying periodic events or reporting any type of
BGPmon state should read this section.

Section 8 roughly corresponds to the XML direc-
tory in the source code and handles the XML formating
of messages. Programmers interested in modifying the
XML format or changing which XML tags are included
in a message should read this section.

Section 9 roughly corresponds to the Clients direc-
tory in the source code and handles all actions related
to accepting client connections and delivering XML for-
matted data to clients.

Section 10 roughly corresponds to the Chains direc-
tory in the source code and handles chaining BGPmon
instances together in order to form a mesh. Program-
mers interested in enhancing BGPmon chaining fea-
tures should read this section.

Section 11 roughly corresponds to the Queues direc-
tory in the source code and handles the message queue-
ing operations. Programmers interested in BGPmons
queue management and dampening algorithms should
read this section.

Section 12 roughly corresponds to the Login direc-
tory in the source code and handles command line re-
lated operations. The command line interface is similar
to Cisco IOS. Programmers interested in command line
interface should read this section.

Section ?? concludes the document and provides ref-
erences to related documents.

2. OVERALL ARCHITECTURE AND MAIN
MODULE

BGPmon is divided into multiple modules. The divi-
sion into modules is driven by both conceptual and im-
plementation objectives. On a conceptual level, BGP-
mon is designed to be extensible and it should be possi-
ble to enhance portions of BGPmon without modifying
the entire code base. For example, one may want to
add new BGP capabilities or add new periodic report-
ing features or change the configuration of chains. Our
design separates the code into distinct modules so the
code related to adding a new BGP capability is isolated
in the peering module, to the maximum extent possible.
Similarly, code related to periodic features would be in
a periodic module and code related to chains configu-
ration is in the chain module. This modular design is
intended to help facilitate additions at all levels.

At an implementation level, the modules are designed
to take maximum advantage of threading. Current trends
in computer architecture are moving toward multi-core
processors and threading programs can take maximum
advantage of such designs. Rather than attempt to
micro-manage control, we allow the operating system
to do this whenever possible. For example, we may
be receiving data from multiple peers and not all of
these peers will be sending data simultaneously. Rather
than building our own logic to select between peers,
we launch a separate thread for each peer and rely on

2

the operating system to fairly share resources among
threads.

Figure 1 shows the overall system architecture and
division into modules.

2.1 Modules
Configuration Module: provides the functions to read

and save BGPmon configuration. These functions call
module specific read/save configuration functions. Ad-
ditionally, configuration module provides the XML unitl-
ity functions which are needed by other modules. There
is no threads associated with this module.

Peering Module: manages the conguration for all peers
and one peering session for each enabled peer. The peer
conguration could be changed by command line inter-
face via interfaces provided by peering module. Peer-
ing session management includes opening the session,
negotiating capabilities, monitoring the session state,
receiving data from the session and reestablishing the
session when needed. The BGPmon design allocates
one thread for each peering session. All messages re-
ceived from (and sent to) a peer are written into the
Peer queue for processing by later modules.

Labeling Module: manages one RIB-IN table associ-
ated with a peer if configured and uses the tables to
assign labels to updates received from the peer. The
RIB tables may also be used by the periodic module dis-
cussed below. Storage of RIB tables is optional and set
by the administrator. A single dedicated thread han-
dles RIB tables and labeling for all peers. The Labeling
Module reads from the the Peer Queue and writes to
the Labeled Queue.

Periodic Event Handling Module: manages periodic
events such as requesting a route refresh from a peer
and periodically announcing the status of peering ses-
sions, queues and chains. There are two threads in this
module: one handles the route refreshes requests and
another handles the periodic status messages. By com-
bining all periodic events in one place, BGPmon can
better manage events. For example, the Periodic Mod-
ule can stagger route refresh requests to large numbers
of route table transfers do not occur at once. Any mes-
sages written by the Periodic Module are placed into
the Labeled Queue.

XML Module: manages the conversion of all BGP-
mon received and generated messages into XML. A sin-
gle dedicated thread handles all XML conversion. The
XML Module reads from the Labeled Queue and writes
to the XML Queue.

Clients Management Module: manages the server thread
of BGPmon, accpeting connections from clients and
other BGPmons. Once a connection is accepted, a dis-
tinct client thread is created for each client. Client mod-
ules read from the XML Queue

Chains Module: allows BGPmon instances to link to-

gether in a chain. In the chain, the XML output of one
BGPmon is fed directly into the XML queue of a sec-
ond BGPmon instance. For example one may deploy
a BGPmon instance at an exchange point in London
and deploy a second BGPmon instance at an exchange
point in Amsterdam. Both instances could chain to
a third BGPmon in Oregon. Clients that connect to
the Oregon receive an XML stream that includes data
from all three BGPmons. The client is unaware BGP-
mons chains exist. This chaining can later be combined
with BGPbrokers who perform additional data process-
ing tasks and produce a powerful monitoring network.
Any data received by the BGPmon Chains Module is
written directly to the XML Queue.

Queue Module: handles the inevitable queuing is-
sues that arise when bursty data sources provide real-
time data to clients that accept data at different rates.
BGPmon implements queue management and pacing
features that adjust clients who are too slow and at-
tempt to pace bursts from routers so peering sessions
are not dropped.

Login Module: handles the Cisco-like commands typed
by logined users and calls the corresponding functions
provided by other modules.

2.2 BGPmon Internal Format
Messages are processed by various modules and flow

through various queues until eventually being converted
into an XML format and sent to clients as shown in
Figure 1. For example, a BGP update is received by a
peering thread, placed in the Peer queue, processed by
the label thread and written into Labeled Queue and fi-
nally read by the XML thread where the message is for-
mated into XML and placed in the XML Queue that is
forwarded to clients. The periodic thread may also gen-
erate messages that are written into the Labeled Queue
directly. All messages in the peer and label queues share
a common BGPmon internal format shown in Figure 2.

Figure 2: BGPmon Internal Format

An internal format is needed to augment the data
received from (or written to) the wire. The BGP mes-
sages received from peers do not carry a timestamp and
the BGP message itself does not indicate the peering

3

Figure 1: BGPmon Architecture.

session over which it is received. BGPmon can easily
add these information by recording the time and noting
the corresponding peering session when the BGP mes-
sage arrives. Similarly, messages generated by BGPmon
also need to have a timestamp and are typically associ-
ated with some peering sessions. Rather than directly
add timestamp and peering session information as XML
tags, BGPmon dened an internal message format. The
use of the internal format allows internal modules to op-
erate on xed length binary elds for e?cient computations
and centralizes all XML functions into one module. Any
later changes to the XML standard are now conned to
the single XML module.

In BGPmon each peering session has a internal SessionID
and all peering sessions are indexed by SessionID. The
Labeling module can use SessionID to determine whether
RIB tables and/or labels should be created for this peer-
ing session. The XML generation module can use the
SessionID to determine any necessary output informa-
tion, ranging from the peers address and AS number to
the number of bytes sent or received over this peering
session.

A small number of messages are not associated with
any peering session and are assigned a SessionID of
zero in the internal format. For example, control mes-
sages indicating BGPmon has started or is shutting
down will have SessionID = 0.

As the name implies, the internal format is strictly
internal to a BGPmon instance. Clients are never ex-
posed to the BGPmon internal format. Messages re-
ceived from other BGPmon instances arrive already for-
mated in XML and are placed directly into the XML
queue as shown in Figure 1.

A BGPmon Internal Format message consists of six
fields shown in Figure 2.

• TimeStamp: is a 32 bit unix time stamp indicating
when the message was received (for messages from
peers) or generated (for messages sent by BGP-
mon).

• PrecisionTime: is a 32 bit field indicating the
number of microseconds and is used for more pre-
cise timing of messages, when the underlying op-
erating system allows.

• SessionID: is a 16 bit number indicating the peer-
ing session over which the message was sent or
received.

• Type: is a 16 bit number identifying the message
type. A listed of types is given in table 3.

• Length: is a 32 bit number indicating the length
of the data field in this message.

• Data: is a sequence of Length octets and corre-
sponds to the message itself.

Note session ID in the message with type 6,7,9 and
10 is set to 0 as they are not specific to one peer.

2.3 The Startup and Main Program

2.3.1 Parse Command Line Arguments
The main program starts with parsing the command

line arguments. Currently there are only a few sim-
ple command line arguments. First, a configuration
file name can be provided using the -c filename. The
configuration file, discussed in more detail in section 3,
provides essential information ranging from the ports
to listen for connections, the peers to monitor, and so

4

0 Reserved Reserved for future use
1 BGPMsgSent a BGP message generated by BGPmon and sent to a peer, generated by peering module
2 BGPMsgRcvd a BGP message received from a peer, generated by peering module
3 BGPMsgLabeled a BGP message received from a peer and enhanced with labels, generated by labeling module
4 BGPTableTransMsg updates reporting the RIB-IN table as part of a route refresh, generated by periodic module
5 SessionStatus instructs the XML module to report session status for a peer, generated by periodic module
6 QueuesStatus instructs the XML module to report the status of all queues, generated by periodic module
7 ChainsStatus instructs the XML module to report the status of all chains, generated by periodic module
8 FSMChange reports a transition in a peer’s finite state machine, generated by peering module
9 BGPMonStart a status message reporting BGPmon has started, generated by configuration module
10 BGPMonEnd a status message reporting BGPmon is shutting down, generated by configuration module

Figure 3: BGPmon Internal Message Types

forth. If no configuration file is specified, a default con-
figuration file name specified in site defaults.h will be
used.

The -r port instructs BGPmon to start the Command
Line Interface on the recovery port. The recovery port
is discussed later in section 2.4 .

The remaining optional command line arguments sets
the logging functions. The program can be set to run in
an interactive mode that sends all messages to stdout
using the -i option. Alternately, the program can be
set to log all messages using syslog using the -s option.
The -i and -s options are mutually exclusive and the
program exits with an error if both are specified. If
neither option is specified, a default value is built into
the code and specified in Util/log.h.

The -l loglevel option specifies the log level and uses
the standard syslog values as follows. Emergencies,
Alerts, Critical Errors, and Errors are levels 0 to 3 (re-
spectively). These messages are always logged regard-
less of the log level setting. Warnings, Notices, Informa-
tion, and Debug output are levels 4 to 7 (respectively).
Setting loglevel = L will log all messages at and below
the L. For example, a log level of 4 will display Alerts,
Critical Errors, Errors, and Warnings, but will not dis-
play Notices, Information, or Debugging output. If the
-l loglevel option is not specified, a default logvalue is
built into the code and specified in Util/log.h. For full
debug output, compile with DEBUG set to 1.

If messages are logged to syslog, the syslog Facility
can be set with the -f facility option. If the -f facility
option is not specified, a default syslog facility is built
into the code and specified in Util/log.h. This option
has no effect if messages are written to standard output
(e.g. if -i was specified).

2.3.2 Read Configuration File
After parsing the command line, the main program

initialize the settings of all other modules by calling
per-module specific initialization function. This needs
to be done before reading configuration file. Then it
continues to read the configuration file by calling the

facade function ”readConfigFile” provided by configu-
ration module. If the configuration file is corrupted or
not readable, main program will first backup the cor-
rupted file by calling ”backupConfigFile” and then try
to save as much as it can by calling ”saveConfigFile”.
The new saved configuration file is readable and a part
of corrupted one. After that, BGPmon will exit. If
no configuration file is existing, main program will go
ahead to start other threads and simply waits for the
user to configure BGPmon via command line interface.

2.3.3 Launch and Monitor Other Threads
After reading conguration les, main program launches

all other threads including peer threads, labeling thread,
XML thread, periodic thread, clients management thread,
chains threads, login thread and signal handling thread.
As BGPmon could be running for a long time, it is likely
some threads get hang or die. If one critical thread dies,
the entire BGP wont work correctly. So main program
also needs to make sure all the threads are still alive.
Specically, each thread keeps updating a timestamp to
indicate its aliveness and main program keeps checking
the timestamp of each module. If one timestamp hasnt
been updated for THREAD CHECK INTERVAL, main
thread will infer the corresponding thread died. That
also requires every module needs to make sure its threads
update their timestamps at least once per THREAD CHECK INTERVAL.
BGPmon will also exit gracefully upon receipt of an in-
terrupt signal. All signal processing and shutdown pro-
cedures are handled by the signal handling thread.

2.4 Design Philosophy
Besides the design issues mentioned above such as

modular architecture and internal message format, how
to congure BGPmon is another critical design issue. If
we dont design it carefully and make the learning curve
low, it would be very di?cult to be deployed widely
in the operational community. In the previous design,
BGPmon used to be congured by manually editing a
XML conguration le. Then we found 2 main issues of
this approach:

5

• The configuration of BGPmon could be complex if
there are hundreds of peers. That means editing
configuration file manually could be tedious and
error-prone.

• Learning the format of conguration le would be a
barrier of using BGPmon.

In order to address these 2 issues, we decided to
mimic cisco IOS conguration. Specically, everything is
congured via command line interface which is a telnet
client typically. All the conguration via command line
interface can be saved in a le and normal users are un-
aware of the existence of this le just like a cisco router.
But the only di?erence is expert users have the exibil-
ity to save multiple conguration les and switch among
them in BGPmon . By doing this, the learning curve
will be less steeper especially for those who are familiar
with cisco IOS conguration.

As the conguration le is not supposed to be edit man-
ually by normal users, it shouldnt be corrupted unless
hardware errors, BGPmons bugs and edition by expert
users. But even now the probability of having a cor-
rupted conguration le is low, we still need to design a
failover mechanism in case of corruption. In our current
design, if the conguration le gets corrupted,

• First, the corrupted conguration le is backed up.

• Secondly, BGPmon tries to save as many parts as
possible into a new conguration le.

• At last, BGPmon exits to alert users the corrup-
tion of conguration le.

We now argue why those actions are necessary. If
BGPmon just quits without saving a new readable congu-
ration le, the user has to manually x the corrupted le.
With a new conguration le, the user can restart the
BGPmon easily. And we dont want to just delete the
corrupted le either as it is not acceptable all other peers
conguration get lost only because of the corruption of
rst peers conguration. The backed up corrupted le is
mainly for the expert users to gure out the problem.
Our aim here is to avoid loss of conguration and man-
ual x in case of corruption.

Last but not least, BGPmon typically listens on a
default or congured port for conguration via command
line interfaces. But in the following 2 cases, the recovery
port(-r port) option is needed to start a BGPmon.

• The default port is in use when BGPmon starts for
the rst time, specially if you dont want to change
the default conguration and recompile BGPmon.

• The congured port is blocked by misconguring the
access control. Then no one can change the ac-
cess control list via command line interface as the
congured port is blocked. With recvoery port,

administrator could restart BGPmon with a non-
blocked port and use command line interface to
correct the misconguration.

3. CONFIGURATION MODULE
Configuration of BGPmon is entirely via command

line interface which is very similar to a cisco router. In-
ternally all the configurations will be stored in a XML
file which can be loaded later. The configuration of
a module corresponds to a part of the XML file. In a
high level, configuration module builds a bridge between
main program and all the other modules in oder to fa-
cilitate the configuration management. More specifi-
cally, configuration module mainly consists of 3 parts.
First configuration module provides a facade to main
program that allows it to read, save and backup XML
configuration file without knowing the details of other
modules . Secondly configuration module provides some
XML utility functions to other modules as each of them
needs the same set of functions to read configuration
from XML file and save configuration into XML file.
At last, configuration module is also a centralized place
to define the XPaths of all the configuration.

3.1 Read, Save and Backup XML Configua-
tion File

Configuration module provides the following 3 func-
tions to main program:

• readConfigFile: This facade function is called by
main program to load the configuration into mem-
ory from XML file. Instead of direct reading the
XML configuration file it delegate reading func-
tions to each module. In other words, each mod-
ule provides a reading configuration function to
load its own configuration from XML file and the
facade function just needs to call these read func-
tions in order to load all the configuration. If the
XML configuration file is corrupted, this function
will try to load as much as possible into memory
and return a error code .

• saveConfigFile: This facade function is called by
main program and login module to write the con-
figuration from memory into XML file. Similar to
readConfigFile, it doesn’t directly write the con-
figuration into XML file. Each module provides
a writing configuration function to write its own
configuration into XML file and this facade func-
tion just calls them one by one.

• backupConfigFile: This function is called by main
program to back up the current configuration file.
It is called typically when the current configura-
tion file is corrupted. We described in details how
main program uses the 3 functions in section 2.

6

3.2 XML Utility Functions
Configuration module provides a couple of get and

set functions to read and write XML file. The caller of
these functions needs to pass in the XPath to locate a
particular configuration item. These get functions can
return the configuration item in a specified data type
and check the value against the specified conditions. For
example, the caller can specify to get a configuration
item in integer and check if the value is between 0 and
10. If this configuration item in XML file cannot be
converted to a integer or its value is larger than 10, a
error code will be returned.

3.3 XPath Definitions
Each module needs to define a bunch of XPaths in

order to read its own configurations from XML file. For
example, for the clients management module it config-
urations look like this:

<BGPmon>
<CLIENTS>

<LISTEN_ADDR>ipv4loopback</LISTEN_ADDR>
<LISTEN_PORT>50001</LISTEN_PORT>
<ENABLED>0</ENABLED>
<MAX_CLIENTS>10000</MAX_CLIENTS>

</CLIENTS>
</BGPmon>

As a result, clients management module needs to de-
fine 4 XPaths for the 4 items: LISTEN ADDR, LIS-
TEN PORT, ENABLED and MAX CLIENTS. In order
to get the 4 values, clients management module needs
to call the get functions mentioned before and pass in
the XPaths. The XPath definitions of all modules can
be found in Configconfigdefaults.h.

3.4 Design Philosophy
As each module has the best knowledge of its own

conguration, our design divides the entire conguration
of BGPmon into a couple of small pieces according to
the division of modules. Each module only handles it
own piece. In this way, the changes of conguration will
be localized inside one module and none of them will
be exposed to main program or other modules. XML
utility functions are dened here as most of modules need
them to handle the XML le. Also in order to manage
all the XPaths of modules e?ciently, they are centralized
stored in the conguration module. The last design issue
here is about default conguration. There are 2 reasons
why we need this default conguration.

• It includes the minimal set of conguration to start
BGPmon for this rst time. For example, the com-
mand line interface needs a default enable pass-
word and a default port to listen on even if there
is no conguration yet.

• It provides the defaults for all the optional congu-
ration. For example, the BGP version of peer
conguration is optional and the default value will
be used if it is not specied by the user.

The default conguration of BGPmon can be found in
site defaults.h. It can be changed by editing this le and
then recompile BGPmon. And default conguration will
be overwritten by the conguration via command line
interface.

4. PEERING MODULE
Peering module manages the configuration for all peers

and maintains peering sessions for enabled peers. Ev-
ery peer has its own configuration that can be changed
via command line interface. But only enabled peer will
have one and only one peering session that is estab-
lished by using the peer’s configuration. If the peer’s
configuration changes after its peering session gets es-
tablished, some of the new changes will not be applied
to the established peering session immediately. For in-
stance, the changes of monitor side address and port
cannot be applied to the existing peering session. This
kind of changes can only take effect by closing the ex-
isting session and opening a new session.

Each peering session is a separate thread that ba-
sically maintains a BGP finite state machine such as
initialize a tcp connection, exchange BGP open and
keepalive messages with the peer and receives BGP up-
date messages from the peer. It also write all messages
between BGPmon and the peer into the Peer Queue.
There are 3 types of messages can be added into Peer
Queue: messages from peer(BMF type 2), messages to
peer(BMF type 1) and FSM state changes(BMF type
6).

The details of peer configuration and peering session
are discussed below.

4.1 Peer Configuration
Similar to BGP configuration in cisco IOS, we use

peer group to simplify the peer configuration in BGP-
mon. If a number of peers share a common set of config-
uration, peer group can simplify configuration greatly.
With a peer group that has the common set of config-
uration, to add a new peer one only needs to assign it
to the existing peer group and specify a few fields if
needed. Those specified fields will overwrite the same
fields from the peer group. But all the other fields from
the peer group will be inherited by the peer.

Different from cisco IOS, every peer must be asso-
ciated with a peer group in BGPmon. If one doesn’t
specify the peer group for a peer explicitly, this peer
will be assign to the default peer group that holds the
default configuration. The default peer group is created
when BGPmon starts. In BGPmon, every user-created
peer group is also inherited from the default peer group

7

by default and it cannot be changed. The fields speci-
fied in the user-created peer group overwrites those from
default peer group.

In detail, peering module maintains 2 arrays: one
array stores all peers and another stores all peer groups.
Each peer in the first array holds a reference to a peer
group in the second array. The default peer group is
always created at first in the peer group array as it will
be referred by any user-created peer group. Figure 4
shows the relationship between peers and peer gourps.
In the example, there are 3 peers and 3 peer groups
including the default peer group. The arrows indication
the relationship between them. Peer1 has it own values
for configure item A and B, so those values overwrite
the values in its peer group ”Group2”. As a net result,
PA1 and PB1 will be the final values for peer1. Peer2
belongs to default peer group directly and it doesn’t
have its own value for item B, so peer2 inherits the value
of item B from default peer group and has PA2 and
DefaultB as its final values. Similar peer 3 doesn’t have
its own value for item A and its peer group(Group1)
doesn’t have the value either, so peers inherits the value
of item A from default peer group. Finally peer3 has
DefaultA and PB3 as it configure values.

Figure 4: An example of Peers and Peer Groups

From the above example, you can see the structures of
peers and peer groups share the same set of configure
items. In our design, peer structure and peer group
structure share the same substructure ”configuration”
that includes all the configure items. Specifically peer
structure consists of three parts:

• Peer ID: It is the identifier of a peer, starting from
0. It is also the index of a peer in the array.

• Session ID: It is the identifier of a peering session
that is associated with a peer, starting from 0. For
the disabled peer, it is -1. Peering session will be
discussed in the next subsection.

• Configuration Substructure: It contains all config-
ure items needed in peer configuration.

And peer group structure also consists of three parts:

• Peer Group ID: It is the identifier of a peer group,
starting from 0. It is also the index of a peer group
in the array.

• Peer Group Name: It is the name of a peer group.

• Configuration Substructure: It is same as the con-
figuration substructure in peer structure.

Configuration substructure includes all the configure
items which are needed by peering session establish-
ment, labeling module and periodic event handling mod-
ule. Figure 5 shows the details of configuration sub-
structure. All of these configure items except ”router-
RefreshAction” and ”labelAction” are used to establish
a peering session. ”routerRefreshAction” is used by pe-
riodic event handling module and ”labelAction” is used
by labeling module.

Peering module also provides a bunch of functions to
create, delete, read and write peers and peer groups.
Command line interface uses these functions to manip-
ulate peer configuration. We have discussed the peer
configuration so far. Next peering session will be dis-
cussed.

4.2 Peering Session
Peering module maintains an array that holds the

data for all peering sessions and each element in this
array is a ”Session” structure. ”Session” structure is
not only used by peering module but also used by label-
ing module, periodic event handling module and XML
module. As we mentioned each enabled peer has its own
thread and these threads create ”Session” structures in
the array and uses them to establish and maintain the
peering sessions. In each peer’s thread, a peering ses-
sion gets established by using the latest configuration
of that peer. When a peering session is established, all
the configure items that are used to establish the ses-
sion will be saved in the ”Session” structure. After that,
any changes in those configure items via command line
interface will not take effect until the peering session
resets. And the peering session could be reset in the
following 2 cases.

• Users reset the peering session explicitly by issuing
a reset command via command line interface. This
happens typically when users change some peer
configuration via command line interface and want
these changes to be applied immediately.

• Peering session resets by itself. For example, the
underlying tcp connection failure could cause a
peer session reset. Or the peering session could
be reset if the peer fails for some reason.

No matter why the peering session is reset, the latest
peer configuration will be used when it gets established
again. An important design decision here is that a new
”Session” structure with new session ID will be created
and used by the thread every time a peering session is
reset. Note even the thread is using the new ”Session”
structure, the old one will still stay in the session array

8

Figure 5: Configuration Substructure

9

for a while until it is not needed. We will discuss the
design philosophy behind this in the next subsection.
In the remaining part of this subsection, the detail of
”Session” structure will be discussed at first and then an
introduction of how to establish and maintain a peering
session by using ”Session” structure will be given.

4.2.1 "Session" Structure
Most fields of a ”Session” structure are related to the

peering module and a few fields are related to other
modules. The details are shown as follows:

• sessionID: is the identification of a peering session
which starts from 0. It is also the index of a peer-
ing session in the array.

• ConfigInUse substructure: is same as the config-
uration substructure shown in Figure 5. It is ba-
sically a copy of peer configuration when peering
session gets established. It will not be changed
once the peering session gets established. This
substructure is important if one wants to know
what are the differences between the latest peer
configuration and the configuration used to estab-
lish the peering session.

• FSM substructure: is a group of fields that are
used to maintain the BGP Finite State Machine
(FSM) such as state of FSM, socket and a cou-
ple of timers. Figure 6 shows the details of FSM
substructure.

• Statistics substructure: is a group of fields related
to the peer’s statistics such as the time of last ses-
sion reset and the number of received updates.
Figure 7 shows the details of statistics substruc-
ture

• peerQueueWriter: is used to write the messages
exchanged between BGPmon and the peer into the
queue.

• sessionStringOutgoing: is a XML string generated
by peering module. It is used by XML module as
the common XML header of all outgoing messages.
It consists of 2 triples: Source triple and Desti-
nation triple. Source triple contains monitor side
address port and AS number. Destination triple
contains peer’s address, port and AS number.

• sessionStringIncoming: is similar to sessionStringOut-
going. It is a common XML header for all incom-
ing messages. In this XML string, source triple
contains peer address port and AS number. Des-
tination triple contains monitor side address, port
and AS number.

• PrefixTable Substructure and AttrTable Substruc-
ture: are used to maintain a RIB table. They

are initialized by peering module and populated
by labeling module. The detail of them will be
discussed in Section 6.

• reconnectFlag: is used to reset a peering session
and set by command line interface. This flag is
typically set when a user wants the changes of peer
configuration to be applied.

• lastAction: is a timestamp that indicates when
the last action of a peering session is. It is used to
check if a peering session is running correctly.

4.2.2 Establish and Maintain Peering Sessions
To establish a BGP peering session, the first step in

peer’s thread is to create a socket and bind it to the
monitor side address and a port specified in ”localSet-
tings” of the peer configuration(See Figure 5). Sec-
ondly, the thread needs to initiate a tcp connection to
the peer actively. Similarly, the peer’s address and port
are specified in ”remoteSettings” of the peer configura-
tion. Note in our design the thread always initiates the
connection actively and simply drops all the incoming
connection from the peer for the security purpose.

Once the tcp connection is established, the thread
will exchange the BGP open message with the peer.
As shown in Figure 5, all the parameters(BGP version,
BGP ID, AS number and holdtime) needed to create a
BGP open message can be found in ”localSettings” of
configuration substructure. Also all announcing capa-
bilities included in the open message can be found in
”announceCaps” of configuration substructure. Then
the thread sends the created open message via the es-
tablished tcp connection and waits for the incoming
open message from the peer.

Upon receiving the open message, the thread will do
the following two checks.

• Check the version, AS number, Identifier and hold-
time in the received open message against the ex-
pected values specified in ”remoteSetting” of con-
figuration substructure(See Figure 5).

• Check the capabilities in the received open mes-
sage against the capability requirements specified
in ”receiveCapRequirements” of the configuration
substructure(Figure 5). For each capability A in
capability requirements, there are three possible
actions:

– Allow: nothing needs to be done.

– Require: check if the received capabilities con-
tain A and the value of the received capability
is same as the check value is configured. If no,
check fails.

– Refuse: check if the received capabilities con-
tain A and the value of the received capability

10

Figure 6: FSM Substructure

Figure 7: Statistics Substructure

11

is same as the check value is configured. If yes,
check fails.

If any of these checks fails, the thread will send a notifi-
cation message to the peer and close the connection. If
all the checks pass, the thread will send a keepalive mes-
sage to the peer and wait for another keepalive message
from the peer. Once this keepalive message is received,
the BGP peering session is successfully established.

After the peering session gets established, the thread
will periodically sent out keepalive messages if holdtime
is not zero and route refresh requests if configured.

Each thread also writes two types of messages into
the peer queue:

• BGP Message: The BGP messages exchanged with
the peer are written into the peer queue. Note no
’Update’ messages will be sent from BGPmon.

• FSM Message: The state changes of BGP finite
state machine are written into the peer queue such
as from ’Idle’ to ’Connect’, from ’OpenConfirm’ to
’Established’ and so on.

These types of messages are converted into BGPmon
internal format before being written into peer queue.
After conversion, the session ID in the message indicates
it belongs to which peering session.

In our design, periodic event handling module cen-
tralized manages and schedules the route refresh for
all the peers. Instead of sending route refresh requests
by itself, periodic event handling module notifies the
peering module to send route refresh requests when
needed. And the field ’routeRefreshFlag’ in FMS sub-
structure(Figure 6) is used to notify peering module.

4.3 Design Philosophy
In the design of peering module, one important issue

is how to handle changes in a peer’s configuration when
the peer already has a existing peering session. Most of
configuration changes will only take effect by resetting
the existing peering session such as changes in monitor
address, port or AS number. But it is not practical to
reset a peering session every time such a change hap-
pens. Probably one might want to reset the peering
session after a series of changes is done. So we decided
to let the user make the decision about when to reset
the peering session. User can reset the peering session
by issuing a command via command line interface.

As a result of letting user make the decision when to
make configuration changes take effect, it is necessary to
provide the user with the difference between the latest
peer configuration and the configuration used to estab-
lish the existing peering session. This explains why we
need a ”ConfigInUse” substructure in a ”Session” struc-
ture. The ”ConfigInUse” substructure is copied from
peer configuration when peering session is established

and will not be changed after that. By comparing the
”ConfigInUse” of a peering session and the latest peer
configuration, the user will know all the changes of a
peer configuration since its peering session was estab-
lished.

Another important design issue is that a new ”Ses-
sion” structure with new session ID will be created and
used by the thread every time a peering session is reset.
The reason is related to the BGPmon architecture and
the format of BMF message. As we discussed, modules
of BGPmon are connected by queues and every mes-
sage in peer queue and label queue has a session ID
field. The session ID will be used as the key to retrieve
the information needed to process the BMF messages by
other modules such as labeling module and XML mod-
ule. For example, XML module needs the session ID to
get the XML common header(”sessionStringOutgoing”
and ”sessionStringOutgoing” in a ”Session” Structure)
in order to convert a BMF message to a XML string. In
BGPmon it is possible that some BMF messages associ-
ated with old peering session are buffered in the queue
after a peering session gets reset . In this case if the
peer’s thread doesn’t create a new ”Session” structure
and simply uses the same ”Session” structure, XML
module will wrongly convert the BMF messages associ-
ated with old peering session by using the XML com-
mon header of new peering session. In order to avoid
this, the peer’s thread needs to create a new ”Session”
structure and keep the old ”Session” structure when a
peering session is reset. After peering session reset, the
peer’s thread will use the new ”Session” structure and
tag the new BMF messages with new session ID. The
old ”Session” structure will finally be deleted after all
the BMF message associated with the old peering ses-
sion are processed.

5. MRT MODULE
This section describes MRT module.

5.1 MRT overview
Multi-threaded Routing Toolkit (MRT) format was

developed to encapsulate, export, and archive routing
information in a standardized data representation. The
BGP routing protocol, in particular, has been the sub-
ject of extensive study and analysis which has been sig-
nificantly aided by the availability of the MRT format.

BGPmon MRT module gives an opportunity to re-
ceive data (updates and RIBs) from Routing Collec-
tors (RC) such as University of Oregon Route Views
Project[6], RIPE NCC RIS Project[5] and others.

MRT control module consists of a single MRT server
thread and multiple MRT client threads.

• MRT Server Thread: It is a TCP server that lis-
tens on a specific port and spawns one thread for
each client.

12

• MRT Client Thread: Each client thread receives
data from a TCP connection.

5.2 MRT Server Thread
The main data structure of MRT control module con-

sists of the following fields:

• listenAddr: The listening socket of server thread
binds to this address. It is a string which could
be a IPv4/IPv6 address or one of four keywords
(ipv4loopback, ipv4any, ipv6loopback and ipv6any).
After it is intialized from configuration, it could be
set via command line interface (CLI) at runtime.

• listenPort: It is the port on which server thread
listens. It is an integer. It also could be set via
command line interface(CLI) at runtime after ini-
tialization.

• enabled: It indicates the status of server thread.
If it is false, server thread stops listening but the
existing clients still run. Otherwise server thread
listens on ’listenPort’ and accepts allowed clients.
It could be set via CLI after initialization.

• maxMRTclients: It is the max number of MRT
clients. It could be set via CLI after initialization.

• labeAction: Its is the label action of MRT clients

• activeMRTclients: It is the number of connected
MRT clients.

• nextMRTclientID: It is the ID for the next client
to connect.

• rebindFlag: If listenAddr or listenPort changes,
this flag will be set to TRUE. That means the
listening socket of server thread will bind to the
new address or port. It is set by CLI.

• shutdown: It is a flag to indicate whether to stop
the server thread.

• lastAction: It is a timestamp to indicate the last
time the thread was active.

• MRTListenerThread: Reference to MRT thread.

• firstNode: First node in list of active MRT clients

• MRTLock: It is a pthread mutex lock used to lock
the MRT info linked list when MRT clients are
added or deleted.

This structure is mainly maintained by server thread.

5.3 MRT Client Thread
MRT Client Thread has:

• id: Identification number of MRT client.

• addr: MRT Client’s IP address.

• port: MRT Clients’s Port number.

• socket: MRT Client’s socket for reading data

• connectedTime: MRT Client’s connected time in
seconds.

• lastAction: MRT Client’s last action timestamp.

• qWriter: This is a queue writer (see section 11).
It is used to write messages to Peering queue.

• deleteMRTClient: Flag to indicate to close the
MRT Client thread

• labelAction: Default label action.

• next: Pointer to next MRT Client node.

• MRTThreadID: Thread reference.

5.4 MRT Module Peering Design

5.4.1 Existing/3rd Party Routing Collectors
This subsection briefly describes basic functions of

Routing Collectors(RC) and required software changes
for MRT format support. Also, we describe few impor-
tant functions of BGPmon MRT module.

Although BGPmon able to peer directly with routers,
there might be existing Routing Collectors in the In-
ternet. BGPmon is able to work with these external
RCs with a few modifications to the RC software. To
enable sending routing data to BGPmon, already exist-
ing Routing Collector’s software should support MRT
format[4]. This patch adds new functions to Routing
Collector to sends MRT messages via TCP connection.
Figure 8 shows the overall topology, where Routing Col-
lector has multiple TCP sessions to Router 1-4 and
BGPmon.

Every MRT message has a MRT header and body
structure. Header in update and RIB-IN messages has
the same structure: Timestamp (time in seconds, when
message originated), Type (type of MRT message), Sub-
type, Length (length of MRT message without the header)
and BGP message[3]. MRT body starts with peer’s and
RC’s IP address, port number and AS number fields.
MRT body in update message contains BGP message
originated by peer, while MRT body in RIB-IN message
has all internal routes generated by RC.

Routing Collector maintains its own peer sessions
via TCP connection. For example, if TCP connec-
tion is lost to peer, Routing Collector should erase all
BGP attributes and prefixes associated with peer id.

13

Routing CollectorBGPmon Version 7
Router 1

Router 2

Router 3

Router 4

TCP Update stream

TCP RIB-IN stream

Figure 8: BGPmon and Routing Collector

If peer reestablish connection, Routing Collector will
create new session structure. In our case, BGPmon
MRT module is using MRT message fields (peer IP ad-
dress, port number and AS number fields) for maintain-
ing ”Session ID” structure described in section 4. The
details of session management logic will be discussed in
section 5.4.5 and 5.4.6.

In our design, Routing Collector can create multi-
ple TCP connections to MRT module. Once the TCP
connection is established, Routing Collector could send
snapshot of MRT RIB-IN messages or new MRT update
messages. This duality raises important questions:

• What if first TCP stream contain MRT update
messages and second TCP stream contain MRT
RIB-IN messages?

• What if first TCP stream contain RIB-IN mes-
sages and second TCP stream contain MRT up-
date messages?

Answer for the first question is simple: MRT module
will process update and RIB-IN messages consequen-
tially: create ”Session” structure, extract BGP mes-
sages with attributes and prefixes from MRT messages,
create new BMF message send it to PeerQueue (see sec-
tions 2 and 11).

Answer for the second question is different: MRT
module will copy all MRT RIB-IN message to queue

buffer. Then, for each of update message, which con-
tain Peer IP address, port number and AS number,
MRT module will search in queue buffer to same val-
ues. If these values are found in queue buffer, MRT
module will extract BGP attributes and prefixes from
buffer, create new BMF messages and send them to
PeerQueue. Then MRT module will convert update
message to BGPmon’s internal BMF format and ap-
ply this message to PeerQueue. Overall, second ques-
tion describes the ideal behavior of Routing Collector:
first of all, its necessary to send correct picture of rout-
ing data (RIB-IN messages). Then Routing Collec-
tor should periodically send MRT update messages to
change (add or withdraw) BGPmon’s internal RIB-IN
table.

Also, it’s important to mention another issue in this
design: what should be a time period (timer) between
two connections? For example, in situation described
in first question, if time value is way too long, we could
damage already created BGPmon’s routing table. If
this value is too small, two connections could overlap
and create a routing mess. In our design, we assume
that 5 to 10 minutes period is fine to use between con-
nections and this value won’t change BGPmon’s routing
table dramatically.

Another significant design issue is handling ”Session”
structure failure. Routing Collector maintains TCP ses-

14

sion with its peers and MRT message format does not
allow us to know, when TCP connection fails or closes
between Routing Collector and peer. In our design, in-
stead of adding and keep tracking timeout value for each
of created ”SessionID’s”, Routing Collector sends RIB-
IN message with empty routing table for peer. At BGP-
mon side, MRT module will erase all BGP attributes
and prefixes associated with this peer. In case when
Routing Collector reestablish connection with a peer,
it sends newly created MRT update and RIB-IN mes-
sages so MRT module will create new ”Session” struc-
ture with BGP attributes and prefixes.

In case if Routing Collectors sends entire MRT RIB-
IN messages periodically, BGPmon MRT module will
reset all routing tables of ”SessionID’s” associated with
Routing Collector’s data and create new ”Session” struc-
tures.

5.4.2 BGPmon MRT module overview
BGPmon MRT module supports 2 types of MRT

messages (see [4]):

• Update message: This message has a header struc-
ture with ”BGP4MP” type and ”BGP4MP MESSAGE”
or ”BGP4MP MESSAGE AS4” subtype and mes-
sage body with BGP attributes and prefixes.

• RIB-IN message: This messages has header struc-
ture with ”TABLE DUMP V2” type and contains
all routing data from Routing Collector (RC).

Messages with other MRT header types (for example
OSPF, ISIS) are ignored and error message will appear
in log file or stdio output.

5.4.3 Processing MRT updates
MRT update message, received from Routing Collec-

tor, has following fields:

• Peer address: Peer IPv4 or IPv6 address

• Local address: RC IPv4 or IPv6 address

• Peer AS: Peer AS number, could be 2-bytes or
4-bytes length

• Local AS: RC AS number, could be 2-bytes or 4-
bytes length

• BGP Message: BGP Message with attributes and
prefixes

MRT module parses update message following MRT
draft specification and converts it to internal BMF BGP-
mon message. Then new BMF message applied to PeerQueue.

5.4.4 Processing MRT RIB-IN tables
Routing Collector sends RIB-IN table message only

once after successful TCP connection. RIB-IN messages

have MRT header structure with ”TABLE DUMP V2”
type and current timestamp. Main body message con-
tains list of all peer clients connected to Routing Col-
lector and their BGP attributes and prefixes. BGPmon
MRT module parses this message, creates and sends
new BMF message to PeerQueue.

5.4.5 Session Management
When Routing Collector establishes TCP connection

to BGPmon and new messages (update or RIB-IN ta-
ble) arrives, MRT module makes the following checks
based on first arrived message:

• First message is RIB-IN message: MRT module
creates RIB-IN queue buffer and copy all RIB-IN
messages to the buffer.

• First message is update message: MRT module
creates new Session structure with sessionID (based
on Peer IP address, port and AS number), searches
through the RIB-IN queue buffer for BGP attributes
and prefixes associated with sessionID. Then MRT
module creates new BMF messages and sends them
to PeerQueue.

5.4.6 Session Closing
RC’s TCP connection sends multiple update mes-

sages from its peers, MRT module keeps track of all
SessionIDs created with particular RC. If RC’s connec-
tion fails or closes, MRT module will:

• Change Label Action: Change all states of previ-
ously created Session IDs to ”stateError”.

• Delete Attributes: Delete all BGP attributes and
prefixes from BGPmon internal RIB-IN table.

5.4.7 2 bytes and 4 bytes AS length format
BGPmon MRT module supports update and RIB-IN

messages containing 2-bytes or 4-bytes length AS Path.
Current software implementation of Routing Collectors
could send updates or RIB-IN messages using different
format. Based on received data, MRT module makes
following changes to ASPath associated with SessionID
structure:

• First message is RIB-IN and has 2 byte ASN

– Second message is update and has 2 bytes ASN:
MRT module will process this update message
without any changes

– Second message is update and has 4 bytes ASN:
MRT module will print a error and wont pro-
cess this message

• First message is RIB-IN and has 4 bytes ASN

– Second message is update and has 2 bytes ASN:
MRT module will convert internal BGPmon
routing table to 2 byte ASPath length

15

– Second message is update and has 4 bytes ASN:
MRT module will process this update message
without any changes

• First message is update and has 2 bytes ASN

– Second message is RIB-IN and has 2 bytes
ASN: MRT module will process this update
message without any changes

– Second message is RIB-IN and has 4 bytes
ASN: MRT module will convert ASpath of
RIB-IN message to 2 byte ASN

• First message is update and has 4 bytes ASN

– Second message is RIB-IN and has 2 bytes
ASN: MRT module will print error and wont
process this message

– Second message is RIB-IN and has 4 bytes
ASN: MRT module will process this update
message without any changes

5.5 Design Philosophy
The important design decision here is that BGPmon

MRT module can receive data from any kind of Rout-
ing Collector which supports MRT format specification.
For example routing software such as Zebra or Quagga
needs a small patch to support MRT format. This patch
is available in BGPmon distribution.

In the design of MRT module, one of important issues
is how to handle order of update or RIB-IN messages
with 2 or 4 bytes AS Path length. Today’s peering
routers rarely use 4-bytes AS Path length and they try-
ing to avoid problem with 4 to 2 bytes ASPath conver-
sion. MRT module is using simple solution described in
previous subsection.

6. LABELING MODULE
Labeling module manages one RIB-IN table associ-

ated with a peer if configured and uses the tables to
assign labels to updates received from the peer. In this
module, the only configuration is about how to process
the BGP updates from peers. It is specified by ”la-
belAction” in peer configuration as shown in Figure 5.
”labelAction” could be one of these three options:

• None: Don’t process the updates at all.

• RibStore: Store the updates in RIB-IN tables on a
per-peer basis. The peer has its own RIB-IN table
if this option is set.

• Label: Store the updates in RIB-IN tables and la-
bel the updates based on how they change RIB-IN
tables. This option implicitly stores RIB-IN for
the peer.

Since the RIB-IN tables are the major memory con-
sumption of BGPmon, one might want to set ”labelAc-
tion” as ”None” if the memory is the major concern.

Labeling module has a single thread which is a reader
of peer queue and a writer of label queue as shown in
Figure 1. Main flow has three steps:

• Read the BMF messages from peer queue

• If the BMF message is a update, then process it
based on the ”labelAction” configuration. Other-
wise, do nothing.

• Write the processed BMF messages into labeling
queue

The detail of main flow logic will be discussed in section
6.2.

6.1 Data Structure
Labeling Module uses 2 main data structures(PrefixTable

and AttrTable) to maintain the RIB-IN table. As the
RIB-IN table is maintained on a per-peer basis, it is nat-
ural to make these 2 structures as components of the
”Session” structure as we mentioned in section 4.2.1.
”PrefixTable” and ”AttrTable” are used to store pre-
fixes and attributes in BGP updates respectively. And
these 2 tables are inter-linked to make up one RIB-IN
table.

6.1.1 PrefixTable Structure
In our design it is a hash table that consists of mul-

tiple entries. Each entry is a link list of nodes and each
node contains a prefix. It has the following six parts.

• prefixCount: is the number of prefixes are con-
tained in the prefix hash table.

• tableSize: is the number of entries in the hash ta-
ble.

• occupiedSize: is the number of occupied entries in
the hash table. Occupied entry means it has at
least one node.

• maxNodeCount: is the max length among all en-
tries in the hash table. The length of one entry
indicates how many nodes it contains.

• maxCollision: is the max number of nodes one
entry is allowed to contain. If one entry contains
too many nodes, we need to increase the number
of entries in a hash table in order to improve the
performance. Basically if maxNodeCount is larger
than maxCollision, we need to enlarge the hash
table.

• emphprefixEntries: is an array of PrefixEntry struc-
tures. It contains all the entries of the prefix hash
table. For the details of PrefixEntry structure, see
Figure 9.

16

Figure 9: PrefixEntry Structure

Each prefix in the NLRI of a BGP update will be one
node of a particular entry in the prefix table. The index
of this entry is calculated by hash value of the prefix.
2 same prefixes will be hashed to the same entry and
stored in the same node. Because of hash collision, 2
different prefixes could also be hashed to the same entry.
But they will be stored in difference nodes of this entry.

6.1.2 AttributeTable Structure
Attribute hash table is similar to the prefix hash ta-

ble mentioned in the previous section. AttributeTable
structure is used to implement a hash table to store
the attributes of BGP updates. It has the following six
parts.

• attributeCount: is the number of attributes are
contained in the attribute hash table.

• tableSize: is the number of entries in the hash ta-
ble.

• occupiedSize: is the number of occupied entries in
the hash table.

• maxNodeCount: is the max length of all entries in
the hash table.

• maxCollision: is the max number of nodes one
entry is allowed to contain.

• attrEntries: is an array of AttrEntry structures.
For the details of AttrEntry structure, see Figure
10.

In the attribute table, the attribute set in a BGP update
will be stored in one node. And which entry this node
belongs to is determined only by the hash value of AS
path. That means if 2 attribute sets have the same AS
path, they will be hashed to the same entry. If other
attributes of the 2 sets are also same, they will be stored
in the same node. If 2 attribute sets have the same AS
path but other attributes are different, they will still be
stored in the same entry but 2 different nodes. Note
in the case the AS path is only stored once and the 2
different nodes will link to the same AS path. Again it
is possible that 2 attribute sets with different AS paths
are hashed to the same entry because of hash collision.

6.2 Main Flow Logic
After introducing the data structure, we describe the

main flow logic of labeling module here. As we men-
tioned, labeling module reads the BMF messages from
peer queue. For the BMF messages with type other
than 2 (see Figure 3), the labeling module simply writes
them into labeling queue without any processing. For
each BMF message with type 2, labeling module pro-
cesses it as follows:

• If it doesn’t contain a BGP update message, sim-

17

Figure 10: AttributeEntry Structure

18

ply writes it into labeling queue without any pro-
cessing.

• If it contains a BGP update message, extract the
session ID from the BMF message. With the se-
sionID the labeling module finds the peering ses-
sion structure and checks the ’labelAction’ in it
(see Figure 5).

– If the field ’labelAction’ is set to ”None”, sim-
ply writes the BMF message into label queue
without any processing.

– If the field ’labelAction’ is set to ”RibStore”,
updates the RIB-IN table of the correspond-
ing peering session and then writes the the
BMF message into label queue. In section 6.3
we will discuss the detail about how to update
RIB-IN tables given a BGP update message.

– If the field ’labelAction’ is set to ”label”, up-
dates the RIB-IN table of the corresponding
peering session and labels this BMF message.
Specifically, one label for each prefix in NLRI
will be attached to the BMF message and its
message type will be changed to 3. Finally the
new BMF message with type 3 will be written
into label queue. In section 6.4 we will discuss
the detail about how to label a BGP update
message.

6.3 Store RIB-IN Tables
The labeling module stores RIB-IN tables on a per-

peer basis. For each incoming BGP update message
from a peer, the labeling module stores it in the peer’s
RIB-IN table as follows:

1. Parse the BGP update message into the following
components:

• IPv4 unicast reachable NLRI and unreach NLRI

• multiple protocol(mp) reachable NLRI and un-
reach NLRI

• the attribute set excluding AS path, mp un-
reachable attributes and NLRI of mp reach-
able attributes

• AS path

2. Hash the AS path and find the entry in the at-
tribute table based on the hash value. Then check
each node of this entry against the AS path and
attribute set from above as follows:

• If the current node’s AS path and attribute
set are the same, return this attribute node.

• If the current node’s AS path is same but at-
tribute set is not, return a new created at-
tribute node that has the new attribute set

and is linked to the existing AS path. Recall
the same AS path shared by multiple nodes is
only stored once.

3. If none of the nodes matches the above 2 rules,
return a new created attribute node with the new
AS path and attribute set.

4. Extract all prefixes from IPv4 unicast reachable
NLRI and mp reachable NLRI. Each prefix is pro-
cessed as follows:

• If there is a existing prefix node which con-
tains the same prefix content such as such as
afi, safi, mask length and address in the prefix
hash table:

– If the existing prefix node’s linked attribute
node(’dataAttr’ field in Figure9) is same
as the attribute node returned from step
2, do nothing.

– Otherwise:
∗ Delete this prefix node from its current

attribute node’s linked prefix nodes list.
If there isn’t any prefix node linked to
this attribute node after this deletion,
remove this attribute node from the
attribute hash table.

∗ Add this prefix node to the linked pre-
fix nodes list in the attribute node re-
turned from step 2.

• Otherwise:

– Create a prefix node(PrefixNodeStruct, see
Figure9) based on the prefix’s content.

– The created prefix node is placed into an
entry(PrefixEntryStruct, see Figure9) in
the prefix hash table based on the hash
value of the prefix’s content.

– Update its linked attribute node field(’dataAttr’
field in Figure9 with the attribute node
returned from step 2.

– As each attribute node maintains a list of
all linked prefix nodes, we also need to add
this new created prefix node to that list of
the attribute node returned from step 2

5. Extract all prefixes from the IPv4 unicast unreach-
able NLRI and multiprotocol unreachable NLRI.
Each prefix is processed as follows:

• If there is a existing prefix node which con-
tains the same prefix content such as such as
afi, safi, mask length and address in the prefix
hash table:

– Delete this prefix node from its correspond-
ing attribute node’s linked prefix nodes

19

list. If there isn’t any prefix node linked
to this attribute node after this deletion,
remove this attribute node from the at-
tribute hash table.

– Remove this prefix node from the prefix
hash table.

• Otherwise: Do nothing.

6.4 Labels the BGP updates
The labeling module labels all the prefixes in a BGP

update message base on how they change RIB-IN ta-
bles. More specifically, the label classifies the prefixes
into six categories: ’new announcement’ versus ’dupli-
cate announcement’, ’same path’ versus ’different path’
and ’withdraw’ versus ’duplicate withdrawal’. In BGP
one update consists of multiple prefixes which share the
same set of attributes and these prefixes might change
the RIB-IN tables in different ways. As a result, the
multiple prefixes in one BGP updates have to be la-
beled separately. That’s why labeling has to be done
on a per-prefix basis, not a per-update basis.

Labeling is done as follows:

1. Return a existing or new created attribute node
according the step 1 and 2 in the preview subsec-
tion.

2. Extract all prefixes from IPv4 unicast reachable
NLRI and multiprotocol reachable NLRI. Each pre-
fix is labeled as follows:

• If there is a existing prefix node which con-
tains the same prefix content such as such as
afi, safi, mask length and address in the prefix
hash table:

– If the existing prefix node’s linked attribute
node (’attributeNode’ field in Figure9 is
same as the attribute node return from
step 1, label it as ’duplicate announce-
ment’.

– Otherwise, compare the ’AS Path’ in this
prefix node’s current linked attribute node
to the ’AS Path’ in the attribute node re-
turned from step 1.
∗ If they are same, label it as ’same path’.
∗ Otherwise, label it as ’different path’.

• Otherwise, label it as ’new announcement’.

3. Extract the IPv4 unicast unreachable NLRI and
multiprotocol unreachable NLRI. Each prefix is la-
beled as follows:

• If there is a existing prefix node which con-
tains the same prefix content such as such as
afi, safi, mask length and address in the prefix
hash table, label it as ’withdraw’

• Otherwise: label it as ’duplicate withdraw’.

6.5 Design Philosophy
The first design issue here is how to organize a RIB

table in memory. Logically a RIB table can be viewed
as prefixes and attributes that are interlinked together.
And another observation is that a set of attributes is
typically shared by multiple prefixes as they are received
in one BGP update. Based on these observations. we
decided to store a RIB by using 2 interlinked hash ta-
bles: prefix hash table and attribute hash table. As
we discussed in subsecions 6.1.1 and 6.1.2, these 2 hash
tables has the same structure in a high level. Specifi-
cally both of them consists of multiple entries and each
entry is a linked list that has multiple nodes. In the
prefix hash table each node represents a prefix and in
attribute hash table each node holds a set of attributes.
And the prefixes and the set of attributes are linked
together if they are received in the same BGP update.
Note one prefix node representing a single prefix can
only be linked to one attribute node holding a set of
attributes. But one attribute node could be linked to
multiple prefix nodes. In other words, the relationship
between prefix node and attribute node is many to one.

The second design issue is how to store the prefixes
and the set of attributes in a BGP update efficiently.
For a prefix it is straightforward to hash the prefix to
an entry(bucket) in the prefix hash table. Then all the
nodes of this entry are checked in order to know if this
prefix is existing or not. For the set of attributes, we
have 2 options here:

• Option1: Hash the entire set of attributes to an
entry of attribute hash table.

• Option2: Extract the AS path form the set of at-
tributes and then hash the AS path to find an
entry for the set of attributes.

Each option has its own pros and cons. Option1 basi-
cally hashes each unique set of attributes to a different
entry(bucket) if ignoring the hash collision. That will
make the attribute hash table too long in terms of the
number of entries. In option2 each set of attributes is
assigned to a entry based on the hash value of its AS
path. The implication is that all sets of attributes with
the same AS path will be assigned to the same entry.
As a result, option2 will take fewer entries than needed
by option1. But each entry will have more nodes in
option2 than option1. So it is a tradeoff between the
number of entries and the length of entries.

But besides that option2 is better in comparing the
AS paths in 2 sets of attributes. In option2 2 sets of
attributes that have different AS paths must be assigned
to the different entry. But 2 sets of attributes assigned
to the same entry don’t necessarily have the same AS
path because of hash collision. So when attribute node
gets created we tag its AS path with ID in order to
differentiate the different AS paths that are assigned to

20

the same entry because of hash collision. As a result,
we can compare the AS paths in 2 sets of attributes as
follows:

• If they are assigned to different entries, we know
they have different AS paths.

• If they are assigned to the same entry, continue to
compare their AS Paths’ IDs.

– If they are the same, we know they have the
same AS path.

– Otherwise, we know they have different AS
paths.

Contrast to option2, comparing the AS paths in 2 sets of
attributes would be more complex in option1 because
one first needs to extract the 2 AS paths from them
then compare the 2 AS paths in bitwise. That could be
a big flaw of option1 as this operation is done for every
receiving prefix in BGPmon.

Another advantage of option2 is that all the sets of
attributes have the same AS path will share the same
AS path structure in memory. In option1 each set of
attributes stores the AS path respectively even some of
them have the same AS path. So option2 is also better
in terms of memory consumption. Based on all of these,
we decided to use option2 in our current design.

The last design issue here is about configuration changes.
As we mentioned, the only related configure item here is
”labelAction” which has 3 values: None, RibStore and
Label. All the possible changes are listed:

• If ”labelAction” changes from Label to RibStore,
nothing needs to be done. The labeling module
will automatically turn off the labeling fucntion.

• If ”labelAction” changes from RibStore to Label,
nothing needs to be done. The labeling module
will automatically turn on the labeling fucntion.

• If ”labelAction” changes from RibStore to None,
the RIB table needs to be freed.

• If ”labelAction” changes from Label to None, the
RIB table needs to be freed.

• If ”labelAction” changes from None to Label, this
change cannot be applied immediately. If we apply
this change immediately, the labeling will misbe-
have as we don’t have the RIB. For instance, right
after the change all the updates labelled as ’new
announcement’ are actually not new.

• If ”labelAction” changes from None to RibStore,
this change cannot be applied immediately either.
If we start to store RIB immediately and right af-
ter that user further changes it from RibStore to
Label, we will run into the same problem as above.

The only way to make the last 2 changes applied is
to reset the session. When a new session starts, the
changes will be applied automatically and labeling will
behave correctly.

7. PERIODIC EVENT HANDLING MODULE
Periodic event Handling Module(periodic module in

short) manages periodic events such as route refresh
requests and periodic status messages. This module
has two threads:

• Periodic Status Messages Thread: It periodically
writes session status messages(BMF type 5), queues
status messages(BMF type 6) and chains status
messages(BMF type 7) into label queue if config-
ured.

• Route Refresh Request Thread: It centralized sched-
ules and executes the route refreshes for all the
peers if configured. For each peer, there are two
possibilities.

– If this peer supports route refresh, periodic
module will notify peering module to send
route refresh request to the peer.

– If this peer doesn’t support route refresh, pe-
riodic module will simulate route refresh by
sending local stored RIB-IN out.

The main data structure of periodic event handling
module has five fields:

• StatusMessageInterval: It indicates the interval of
sending periodic status messages for peering ses-
sions, queues and chains. It is configured by user.

• RouteRefreshInterval: It indicates the interval of
requesting route refresh for every peer that is con-
figured for route refresh. It is configured by user

• labelQueueWriter: It is used to write messages
into the label queue.

• shutDownFlag: It is used to signal periodic module
to exit. Specifically both threads keep checking
this flag, they will quit if it becomes TRUE.

Next we will discuss the detail of the two threads.

7.1 Periodic Status Messages Thread
This thread writes one status message for each peer-

ing session, one status message fro all queues and one
status message for all chains into the label queue every
’StatusMessageInterval’ interval. Peering session sta-
tus message (BMF type 5) only includes a session ID
instead of including the detail information. Queues’
status message(BMF type 6) and chains’ status mes-
sage(BMF type 7) are not associated with a particular
peering session.

21

Then when XML module reads a session status mes-
sage from label queue, it will extract the session ID
from it and retrieve the detail information based on the
session ID. Finally the detail information of a peering
session will be converted to XML and write into a XML
queue. The detail is built from peering session struc-
ture(see section 4.2.1). More specifically, it consists of
the follow fields: When XML module reads a queues
status message from label queue, it will ignore the ses-
sion ID from it and retrieve the status information all
queues. Finally the status information of all peers will
be converted to XML and write into a XML queue. Sim-
ilarly when XML module reads a chains status message
from label queue, it will ignore the session ID from it
and retrieve the status information all chains. For the
XML format of these periodic status messages, please
refer to the XML specification.

7.2 Route Refresh Request Thread
This thread distributes the route refresh requests for

all established peering session evenly over time in order
to prevent the queues being overwhelmed.

If a route refresh request is for one peer that supports
route refresh, the periodic module just needs to notify
peering module to issue a route refresh request message.
Otherwise the periodic module has to simulate a route
refresh by sending out this peer’s local RIB-IN. The de-
tail of handling the route refresh request for a establish
peering session is as follows:

• Check if route refresh is enabled for this session.
If not, do nothing. Otherwise, continue.

• Check the ’routeRefreshType’ field of session struc-
ture(see section 4.2.1)..

– if it is 0, that means this peer doesn’t support
route refresh. The periodic module needs to
send out this peer’s RIB-IN table as follows:
∗ The ’prefixTable’ and ’attributeTable’ fields

of the found RL structure compose this
peer’s RIB-IN. For each node in the at-
tribute table, do the following things:
· Find all the related prefix nodes in the

prefix table.
· Build a BMF message(type 4) that con-

tains a BGP update that is built based
on the attribute node and all related
prefix nodes.

· Write this BMF message into label queue.
– Otherwise, that means this peer supports route

refresh. The periodic module just needs to set
the ’routeRefreshFlag’ field of session struc-
ture to TRUE in order to signal the peering
module to send out route refresh request to
the peer.

7.3 Design Philosophy
Actually in the previous design we used to put the

logic of sending route refresh requests and periodic sta-
tus messages in the peering module. More specifically
each peering thread decides when to send its own route
refresh requests and periodic status messages. But it
turns out we lost the ability to schedule these events
from a global view. Specially for route refresh requests,
it is important to schedule them carefully as each of
them will trigger hundreds of thousands of messages
that could be a big burden for the entire system. If
all the peers’ route refresh request are scheduled at the
same time, the queues in BGPmon might not be able
to hold the huge amount of messages trigged by them.

In the current design, we have a dedicated module to
schedule these events. The route refresh requests of all
peers are scheduled evenly over the time based based
on ”RouteRefreshInterval” and the number of peers in
order to prevent the queues from being overwhelmed.
In contrast to route refresh requests, the periodoc sta-
tus messages of all peers are simply written into the
label queue every ”StatusMessageInterval” as the size
of periodic status message is pretty small. But by de-
coupling the scheduling from peering module it is easy
to plug in some sophisticated scheduling algorithms for
the periodic status message as needed.

8. XML GENERATION MODULE
The XML generation module manages the conversion

of all BGPmon received and generated messages into
XML. It has one single thread which consists of three
main steps.

• It reads messages from the label queue. These
messages can be any of all eight types in Figure 3.

• It converts all types of messages into XML format
according to our XML specification.

• It writes messages in XML format to the XML
queue for processing by the client threads.

8.1 XML Format Overview
The XML module converts all the messages from BMF

to XFB, a XML-based format for BGP routing infor-
mation. XML is a general-purpose markup language;
its primary purpose is to facilitate the sharing of data
across different information systems, particularly via
the Internet. Using XML as the base for our XFB
markup provides the following advantages:

• XFB is human and machine-readable. By using
CSS or XSL, XFB can be easily displayed on web-
sites. Because XFB is based on XML which is a
common interface to many applications, XFB can
be processed by a variety of existing tools.

22

• XFB can easily be extended with additional in-
formation based on the raw BGP routing infor-
mation. The BGP data is simply annotated with
additional attributes and/or elements; programs
which are not looking for this new information will
simply ignore it. This allows us to easily modify
XFB in general (or particular BGPmons) to allow
for newly required information. We include guide-
lines for adding new standard elements in each sec-
tion.

• XFB messages can be used to reconstruct the raw
BGP messages, if needed.

Though XFB pays a storage cost since a compact binary
message is (usually) expanded into ASCII text with
additional tags, the results of our experiments using
the default compression parameters for bzip2 on XFB
data are promising. Currently there are two types of
BGP routing information which are included in XFB:
BGP messages which come ”over the wire” and may
or may not have additional ”helper” information ap-
pended, and BGP control information that originates
with the BGPmon. For the details about XFB, please
refer to the BGPmon XFB specification.

8.2 Design Philosophy
There are two issues when we design how to convert

messages to xml.

• How to convert the fields which are not defined in
xml specification? The answer to this question is
each unknown field is represented by the a ’Octets’
element. The ’Octets’ element looks like: <octets
length = ’3’>2E3A4D</octets>. In this way, we
avoid any information loss even for the information
we don’t know.

• How to convert the xml message back to binary?
Similar to the previous one, the solution is we pig-
gyback a ’Octets’ field which represent the entire
BGP raw message from wire in the end of xml
message. In this way, we can easily replay some
BGP raw messages to routers by extracting the
last ’Octets’ field.

9. CLIENTS CONTROL MODULE
This module is used to manage the BGPmon clients.

Clients control module consists of a single server thread
and multiple client threads.

• Server Thread: It is a TCP server that listens on a
specific port and spawns one client thread for each
allowed client.

• Client Thread: Each client thread reads the mes-
sages from the XML queue and sends them to the
client via a TCP connection.

During the initial BGPmon startup, the server thread
needs to start first to allow clients to connect before
the peering threads begin. This allows the clients to re-
ceive the complete set of messages which is particularly
important for logging client. Some messages will be
skipped when a client becomes unresponsive or is unable
to keep up with the messages stream. This addresses
the need for support of real-time support in BGPmon
as slow clients cannot affect the entire system.

9.1 Data Structure
The main data structure of clients control module

consists of the following fields:

• listenAddr: The listening socket of server thread
binds to this address. It is a string which could be
a IPv4/IPv6 address or one of four keywords(ipv4loopback,
ipv4any, ipv6loopback and ipv6any). After it is
intialized from configuration, it could be set via
command line interface(CLI) at runtime.

• listenPort: It is the port on which server thread
listens. It is an integer. It also could be set via
command line interface(CLI) at runtime after ini-
tialization.

• enabled: It indicates the status of server thread.
If it is false, server thread stops listening but the
existing clients still run. Otherwise server thread
listens on ’listenPort’ and accepts allowed clients.
It could be set via CLI after initialization.

• maxClients: It is the max number of clients. It
could be set via CLI after initialization.

• activeClients: It is the number of connected clients.

• nextCientID: It is the ID for the next client to
connect.

• rebindFlag: If listenAddr or listenPort changes,
this flag will be set to TRUE. That means the
listening socket of server thread will bind to the
new address or port. It is set by CLI.

• shutdown: It is a flag to indicate whether to stop
the server thread.

• lastAction: It is a timestamp to indicate the last
time the thread was active.

• firstNode: It is the header of a linked list which
maintains the information of all connected clients.
Figure 11 shows the details of client structure of
this linked list.

• clientLock: It is a pthread mutex lock used to lock
the clients info linked list when clients are added
or deleted.

23

• lastAction: It is a timestamp to indicate the last
time the thread was active. This structure is
mainly maintained by server thread.

9.2 Server Thread
Server thread has 2 main tasks:

– Listen on ”listenAddr” and ”listenPort” and
periodically every THREAD CHECK INTERVAL
(60s by default) check the values of follow-
ing three fields. These three fields could be
changed by command line interface (CLI).

∗ shutdown: If it is TRUE, the server thread
will be closed.

∗ enabled: If it is FALSE and ”shutdown” is
FALSE, close the current listening socket
if any. If it is TRUE and ”shutdown”
is FALSE, open a new listening socket if
there is no listening socket.

∗ rebindFlag: If it is TURE and ”shutdown”
is FALSE, we need to close the current
listening socket and open a new listening
socket based on the current ”listenPort”
and ”listenAddr”. This flag is typically
set TRUE after changing ”listenPort” and
”listenAddr”.

– Accept the new clients and check them against
Access Control List(ACL).

∗ If a new client pass the ACL check, a new
thread will be spawned for it and a new
node will be added to the linked list. Then
server thread goes back to listen.

∗ If a new client doesn’t pass the ACL check,
the client socket(returned by accept sys-
tem call) will be close and server thread
keeps listening.

9.3 Client Thread
Client thread just reads the messages from XML
queue and then writes the messages to the client
via socket. Each client thread is associated with
the following client structure(See Figure 11).

– id: identification number of the client.

– addr: client’s address.

– port: client’s port.

– socket: client’s socket for writing messages to
the client.

– connectedTime: client’s connected time in sec-
onds.

– lastAction: client’s last action timestamp.

– qReader: This is a queue reader(see section
11). It is used to read messages from XML
queue.

– deleteClient: flag to indicate to close the client
thread and cleanup client structure.

Note the client thread might exit by itself because of
the following 2 reasons:

• This client thread fails to read the messages from
XML queue. In this case, the client thread needs
to exit.

• This client thread fails to write messages to ”socket”.

The client thread also might be deleted(call deleteClient)
by command line interface(CLI) at running time. Note
deleting a client thread is asynchronous action. In other
words, ”deleteClient” function only sets the ”delete-
Client” flag as TRUE. This deletion will be deferred
to the next time the child thread checks the ”delete-
Client” flag. At that time the client thread will exit
and the client info in the linked list will be removed.

9.4 Design Philosophy
The important design decision here is that we should

let each client specify what they want to receive from
BGPmon or we just make BGPmon blindly send every-
thing to the every client. In the previous design, we did
let clients submit their own filters to specify what kind
of data they want to receive from BGPmon. But then
we realized it would be a huge burden if hundreds of
clients all specify their own complex filters. As our main
deign principle is to let BGPmon provide a real-time
event stream to a large number of clients, we should re-
lieve BGPmon from the huge burden of handling clients’
filters. As a result, in current design BGPmon simply
sends all data to all clients without any processing.

10. CHAIN MODULE
This module is used to allow BGPmon to scale out

through chaining multiple BGPmons. BGPmons are
chained together via tcp connections. Conguration of
BGPmon chains is manual so care must be taken not
to create loops in the topology. One BGPmon could
initialize a chain to another BGPmon or accept a chain
from another BGPmon. From the perspective of BGP-
mon accepting a chain, the BGPmon intializing the
chain is same as a typical client. As a result, the logic of
accepting a chain and serving data is already handled
by clients control module(see section9).

On another side, Initializing a chain and processing
data are implemented in this chain module. At the be-
ginning of BGPmon, for each configured chain its data
structure is populated and its threads is launched if it
is enabled. After that, chains can be created, deleted,
disabled and enabled via command line interface(CLI).

10.1 Data Structure
The main data structure of a chain has the following

fields:

24

Figure 11: Client Structure

• chainID: It is the unique identifier of a chain. It
is an integer starting from 0 and automatically as-
signed when a new chain is created.

• addr: It is the address of remote BGPmon. It is a
string which could be a IPv4/IPv6 address or one
of two keywords(ipv4loopback and ipv6loopback).
After it is intialized from configuration, it could be
set via command line interface(CLI) at runtime.

• port: It is the listening port of remote BGPmon.
It is an integer. It also could be set via command
line interface(CLI) at runtime after initialization.

• enabled: It is a boolean value indicating the sta-
tus of a chain. If it is FALSE, the chain thread
will exit. It could be set via command line inter-
face(CLI) at runtime after initialization

• connectRetryInteval: It is the tcp connection retry
interval in seconds. It could be set via command
line interface(CLI) at runtime after initialization

• deleteChain This flag will be checked after a chain
is disabled. If it is TRUE, the chain’s data struc-
ture will be freed. It is set by via command line
interface(CLI).

• reconnectFlag: This flag will be checked every time
a message is received or periodic check timer ex-
pires. Any changes of ”addr” or ”port” will set
this flag to TRUE. If it is TURE, the existing tcp
connection will be torn down and a new tcp con-
nection(with the latest ”addr” and ”port”) will be
initialized.

• lastAction: It is a timestamp to indicate when is
the last action of this chain. It is used to infer

the liveness of the chain thread by thread man-
agement module. The chain thread keeps update
this timestamp when it is alive. If this field hasn’t
been updated for a while, the thread management
module can infer the chain thread is dead.

• runningFlag: It is a flag to indicate if the chain
thread is running or not. It should be set to FALSE
when the chain thread normally exits.

• socket: It is the socket of a chain.

• serrno: It is socket error code.

• connectRetryCounter: It is the number of times of
retrying a tcp connection.

• connectionState: It is current connection state of
a chain. It could be one of these: chainStateIdle,
chainStateConnecting and chainStateConnected.

• msgHeaderBuf: It is used to buffer the header(first
100 bytes) of a XML message. With the length
field of header, we can figure out how long the
XML messages. Then the complete XML mes-
sage can be read from the socket and written into
the XML queue. Basically every message written
into XML queue must be a complete XML message
with open tag and close tag, not a partial message.
Otherwise the XML messages from different chains
will be mangled.

• establishedTime: It is a timestamp indicating when
a chain got connected to remote BGPmon.

• lastDownTime: It indicates when is the last down
time of tcp connection.

• resetCounter: It is the number of tcp connection
resets.

25

• messageRcvd: It is the number of received XML
messages via a chain.

• periodicCheckInt: It indicates how often the peri-
odic check timer expires.

• xmlQueueWriter: It is used to write xml messages
to XML queue.

This data structure is attached to each chain thread.

10.2 Chain Thread
Each chain is a separate thread and has the following

tasks:

• Initialize a tcp connection to a configured remote
BGPmon instance(sending side of the chain).

• Read the XML stream via the tcp connection, cut
the stream into messages and write the messages
into XML queue.

• Check the 2 flags: ”enabled” and ”reconnectFlag”
every time a XML message is received or periodic
check timer expires .

– The ”enabled” flag is set directly by CLI. When
it is TRUE, the client thread will exit by itself
and if the ”deleteChain” flag is also TRUE its
corresponding data structure will be freed.

– The ”reconnectFlag” is also set by CLI. Any
changes of ”addr” and ”port” will set this flag
TRUE. If it is TURE, the existing tcp connec-
tion will be torn down and a new tcp connec-
tion will be initialized with the latest ”addr”
and ”port”.

10.3 Chain Management
Chains management is done via command line inter-

face(CLI). There are 4 possible chain operations.

10.3.1 Create a Chain
Creating a chain is a synchronous operation. It will

occur immediately after function ”createChain” is called
by CLI. It consists of 2 steps:

• Populate the new chain’s data structure.

• Launch a thread for the new chain if its initial
’enabled’ flag is TRUE.

10.3.2 Enable a New Chain
Enabling a chain is a synchronous operation. A new

thread will be immediately launched after function ”en-
ableChain” is called by CLI. Note the chain’s data struc-
ture must be existing when the function ”enableChain”
is called.

10.3.3 Disable a New Chain
Disabling a chain is a asynchronous operation. It

will NOT occur immediately by calling function ”dis-
ableChain” by CLI. The function ”disableChain” only
sets the flag ”enabled” to FALSE. The chain thread will
actually exit when a new XML message is received or
periodic check timer expires. The difference between
disabling a chain and deleting a chain is that disabling
a chain will not free the chain’s data structure.

10.3.4 Delete a Chain
Deleting a chain is a asynchronous operation. It will

NOT occur immediately by calling function ”deleteChain”
by CLI. Inside the function ”deleteChain”, both ”en-
abled” flag and ”deleteChain” flag are set to TRUE.
The actual actions of exiting chain thread and freeing
chain data structure are deferred to the next time a
new XML message is received or periodic check timer
expires.

10.4 Design Philosophy
If one downstream BGPmon is chained to multiple

upstream BGPmons, the fundamental design issue is
about how downstream BGPMon avoids to mingle the
XML streams from upstream BGPmons. Remember all
the XML streams from upstream BGPmons are mixed
together into one stream at the downstream BGPmon
by writing them into XML queue. That means the
downstream BGPmon has to first divide the streams
from upstream BGPMons into messages and then write
all the messages into the XML queue.

We add a length field for each XML message in order
to help BGPmon divide stream into messages by giving
it a hint about how long the message is. More specifi-
cally, downstream BGPmon repeats the following steps
to process a stream:

• Reads the first a few bytes from stream and figures
out the length of the current message

• Extracts the message from the stream based on
the length from the previous step

• Move the cursor to the end of the current message.

11. QUEUE MODULE
Queue is a utility module which is used by other mod-

ules to send messages from one to another. As shown
in Figure 1, there are 3 queues in BGPMon.

• Peer Queue: It is used by peering module to send
internal messages with type 1,2,4 and 6 to the rib
and labeling module.

• Label Queue: It is used by rib and labeling mod-
ule, periodic module and main module to send all
eight types of internal messages to XML genera-
tion module.

26

• XML Queue: It is used by XML generation mod-
ule to send XML messages to client management
module which in turn sends them to client appli-
cations.

Each of them is a running instance of queue module.
They are created by main module during the initial
phase of BGPmon and then used by other modules.

The queue module is build on a circular array and
each item in this array contains a generic pointer which
points to the real message. In this way we can make
queue module generic enough to hold all kinds of mes-
sages. It also keeps track all the readers and writers.
The main data structure of queue module will be intro-
duced in subsection 11.1.

The queue module implements a Readers/Writers pat-
tern where multiple threads may access the same queue
simultaneously, some reading and some writing. We call
the reading thread reader and the writing thread writer.
Each message written by a writer is available to all the
readers and a message can be deleted from the queue
only after all the readers read it. A key design issue
is the locking mechanism to synchronize access to the
share data structure in the queue among all threads.
The details of thread synchronization will be discussed
in subsection 11.2.

The biggest challenge in the design of queue mod-
ule is to avoid being overwhelmed with limited queue
length. There are two situations we need to address:
1) writers write too fast, and 2) Readers read too slow.
We will discuss how to address these two situations in
subsection 11.4.

11.1 Main Data Structure
The main data structure of queue module is called

’Queue’. It consists of four parts:

• General Substructure: It holds the general infor-
mation for this queue such as the queue’s name,
its mutex lock and some logging information. See
the details in 11.1.1.

• Items Substructure: It contains all the data of
the queue. It implements a circular array. See the
details in 11.1.2.

• Readers Substructure: It contains the information
of all readers of the queue. For example, the se-
quence number of the next unread item for each
reader needs to be maintained here. See the details
in 11.1.3.

• Writer and Pacing Substructure: It is used to
track all the writers in order to pace them when
needed. And some other information needed for
pacing are also included here such as pacing on/off
threshold. See the details in 11.1.4.

11.1.1 General Substructure
The general substructure has the following fields:

• name: It is the name of the queue. In BGPmon,
the name of peer queue is ’PeerQueue’, the name
of lable queue is ’LabelQueue’ and the name of
XML queue is ’XMLQueue’.

• queueLock: It is a pthread mutex lock which is
used for thread synchronization.

• queuecond: It is a pthread condition variable which
is used to notify a reader when the new item gets
wrote.

• logging related fields: A group of logging related
fields such as the historical max number of mes-
sages, the historical max number of readers and
the historical max number of writers.

Figure 12 shows the details.

11.1.2 Items Substructure
Items substructure maintains a circular array of items

which is the heart of queue module. Each item is defined
as a ’QueueEntry’ structure which has the following two
fields:

• count: It indicates how many readers haven’t read
it. This reference count decrements by one after
one reader reads this item. If the reference count
of a item is zero, this item can be reclaimed by
the queue module. Otherwise this item cannot be
reclaimed.

• messageBuf(void *): It points to the real data
buffer of this item. The data buffer must be cre-
ated by writers and be passed into queue module.

Items substructure has the following five fields:

• head: It is the sequence number of the oldest item
in the queue. It means at least one reader hasn’t
read this item. The ’head’ is incremented after the
oldest data item is read by the last reader.

• tail: It is the sequence number of the next avail-
able item in the queue. It is incremented by writ-
ing a new message into the queue.

• items: It is an array of items. Each item is a
’QueueEntry’ structure.

• copy: It is a callback function. If a reader reads a
item and it is not the last reader for this item, the
callback function will be called to return a copy of
this item to the reader. If a reader is the last one
of a item, this item will be returned directly. This
allows the reader to always free the returned item
after processing it without knowing the details of
queue.

27

Figure 12: General Substructure of Queue

• sizeof: It is a callback function. Based on ’QueueEn-
try’ structure, we know the size of a item depends
the size of its data buffer. This function is used
to get the size of a data buffer in bytes. As the
data format is queue specific, the sizeof function is
provided by the queue creator.

In order to avoid drop any messages in the queue, the
different between ’head’ and ’tail’ must be smaller than
’max’ field. Note ’head’ and ’tail’ are all sequence num-
bers, not subscripts of array. A sequence number(seq)
is long integer and is a logical subscript of the queue.
The subscript to access the physical array can be cal-
culated by seq % max. Figure 13 shows the details of
this substructure.

11.1.3 Readers Substructure
This substructure is used to track all the readers. It

has the following three fields:

• readerCount: It is the current number of readers.

• nextItem: It is an array of sequence numbers for
all the readers. This array is indexed by reader
ID and each sequence number indicates the next
unread item in the queue for the corresponding
reader. For example, nextItem[6] is the sequence
number of the next unread item for the reader with
ID 6. The length of this array equals the max
number of readers.

• itemsRead: This array is indexed by reader ID
and each element indicates total items read by the
corresponding reader. For example, itemsRead[6]
is the number of total read items by the reader
with ID 6. The length of this array also equals the
max number of readers.

Note the readers of the same queue might have different
next item.

Figure 14 shows an example of the queue which can
help us understand the items substructure and readers
substructrure. In this example, there are a queue with

Figure 14: An Example of Queue

max length 16 and 5 readers. The items substructure
looks like this:

• head: is 1000 which is sequence number of the
oldest item. The count of that item is 3 which
means there are three readers haven’t read it.

• tail: is 1008 which is sequence number of the next
available item for the new message.

28

Figure 13: Items Substructure of Queue

• items: It is an array of 16 items. 8 of them are in
use.

– The item with sequence number 1000 has a
reference count as 3 which means 3 readers
haven’t read it.

– The item with sequence number 1001 has a
reference count as 4 which means 4 readers
haven’t read it.

– All the others item with sequence number from
1002 to 1007 has a reference count as 5 which
means all 5 readers haven’t read it.

The corresponding readers substructure is as follows:

• readerCount: is 5 which means there are 5 readers.

• nexItem[0]: is 1000 which means the next item for
the reader 0 is 1000 .

• nexItem[1]: is 1000 which means the next item for
the reader 1 is 1000 .

• nexItem[2]: is 1000 which means the next item for
the reader 2 is 1000 .

• nexItem[3]: is 1001 which means the next item for
the reader 3 is 1001 .

• nexItem[4]: is 1002 which means the next item for
the reader 4 is 1002 .

• itemsRead[0]: is 0 which means reader 0 hasn’t
read anything .

• itemsRead[1]: is 0 which means reader 1 hasn’t
read anything.

• itemsRead[2]: is 0 which means reader 2 hasn’t
read anything.

• itemsRead[3]: is 1 which means reader 3 has read
1 items.

• itemsRead[4]: is 2 which means reader 4 has read
2 items.

11.1.4 Writers and Pacing Substructure
This structure is used to track the writing rate of all

the writers and pace them when needed. It has the
following fields:

• writerCount: It is the number of current writers.

• tick: It is the start time of the current pacing in-
terval.

• readCount: It is used together with ’tick’ to count
how many messages are read in one interval by all
the readers.

• writeCounts: It is an array of counts for all the
writers. One count is for each writer which is used
together with ’tick’ to count how many messages
are written in one interval. The length of this array
equals the max number of writers.

• writesLimit: It is how many messages are allowed
to be written in the queue by each writer in one
interval when pacing is turned on.

• pacingFlag: It is set to TRUE if pacing is turned
on. It is set to FALSE if pacing is turned off.

29

Figure 15: Writers and Pacing Substructure of Queue

Figure 15 shows the details of this substructure. In the
subsection 11.4, we will discuss how pacing works by
using this substructure in detail.

11.2 Thread Synchronization
In BGPmon, there are multiple writers that write

messages into one queue and multiple readers that read
messages from the same queue. As each read/writer is
a separate thread, the thread synchronization is very
important for the queue. In our design we use mu-
tex lock and condition variable to manage the thread
synchronization. Basically the writer needs to lock the
queue by obtaining ’queuelock’ in general substructure
before it writes a message and unlock the queue by re-
lease ’queuelock’ after it writes a message. Similarly the
reader needs to lock the queue before it reads a message
and unlock the queue after it reads a message.

When a reader exhausts the messages in the queue,
it must wait for new messages while other readers or
writers still need to continue their reading or writing.
In our design, if a reader wants to read a message from
the queue and successfully locks the queue by obtaining
’queuelock’, it will do the following checks:

• If there are some new messages available for it to
read, it will read the oldest one and unlock the
queue.

• Otherwise, it unlocks the queue and waits on the
condition variable ’queueCond’ to lock the queue
again. If any writer writes any new messages into
the queue, the queue will broadcast this condition
to all the waiting readers.

11.3 Interface Functions
In the queue module, there are only two interface

functions which can be used by other modules.

• readQueue: It is used to read a message from

queue by giving a queue ID, reader ID and a pointer
which points to the result data buffer. The re-
turn value of ’readQueue’ is the number of re-
maining messages of this reader. It may return
READER SLOT AVAILABLE if this reader has
ceased. See details in 11.4.2.

• writeQueue: It is used to write a message into
queue by giving a queue ID, writer ID and a pointer
which points to the written message. It returns 0
if successes.

11.4 Stream Control
In our design, the queue removes a message until all

the readers read it. As a result there are two things we
can do in order to prevent a queue being overwhelmed.

• Pacing writers: The queue paces the writers ac-
cording to the average reading rate across all the
readers. For example the queue is almost full and
there are 4 readers and 2 writers. If each of reader
can read 8 messages per second averagely, we should
limit the writing rate of each writer to 8/2 = 4 in
order to avoid overwhelm the queue. See details
in 11.4.1.

• Adjust slow readers: In some cases pacing writ-
ers doesn’t work, the queue needs to adjust the
slow readers. For example, the queue is almost
full and there are 4 readers and 2 writers. If 3 of
the 4 readers can read 8 messages per second but
one of them can only read 2 message per second.
As a result, the average reading rate across the 4
readers is 6.5 messages per second. In this case,
even pacing is turned on and each writer is lim-
ited to write 6.5/2 = 3.25 messages per second the
queue will still be overwhelmed because the slow-
est reader cannot read 3.25 messages per second.

30

That’s why in this case the queue has to adjust the
slowest reader by skipping its unread items. See
details in 11.4.2.

11.4.1 Pacing Writers
In our design, the queue utilization(from 0% to 100%)

is used to determine when to turn on pacing. When the
queue utilization exceeds a configurable threshold(PacingOnThreshold),
pacing is turned on until the queue utilization drops be-
low a configurable threshold(PacingOffThreshold). The
reason why we have two thresholds here is this allows
the queue to reach a steady state rather than oscillate
in and out of pacing. During the pacing period, the
objective is to make the writers write at a pace that
matches the average reader. More specifically, in each
configurable interval(PacingInterval) the queue limits
the number of writes from each writer according to the
average number of reads by all readers. In order to do
this, when a new interval starts we need to predict the
number of reads by all readers in this new interval and
then use this value to pace the writers in this new inter-
val. The pacing related logic related to the ’readQueue’
function is as follows:

1. Check if a new interval starts

(a) If yes, update the ’writesLimit’ using expo-
nential weighted moving average(EWMA):

i. Calculate the new ’writesLimit’ by this
formula. Note ’alpha’ is configurable, ’writes-
Limit’ is the number if writes allowed per
writer in the new interval, ’averageReads’
is the average number of reads by all read-
ers in the past interval and ’writerCount’
is the number of writers.

writesLimit = (1− alpha) ∗ writesLimit +

alpha ∗ averageReads

writerCount

ii. If new ’writesLimit’ is larger than half of
the remaining queue, use half of the re-
maining queue as the new ’writesLimit’.

iii. If new ’writesLimit’ is smaller than a con-
figurable ’minWritesLimit’, use ’minWrites-
Limit’ as the new ’writesLimit’.

(b) Otherwise, do nothing.

2. Check if needs to turn off pacing by compare the
queue utilization with the configurable threshold(PacingOffThreshold).

(a) If the queue utilization is smaller, set the ’pac-
ingFlag’ field as FALSE.

(b) Otherwise, do nothing.

Note this logic will be executed every time a reader calls
’readQueue’.

The ’writeQueue’ function starts with the same pac-
ing related logic as ’readQueue’. But after that, it needs
to limit the number of writes per interval according to
the ’writersLimit’ field when pacing is enabled. This
additional step inside the ’writeQueue’ function is as
follows:

1. Check if needs to turn on pacing by compare the
queue utilization with the configurable threshold(PacingOnThreshold).

(a) If the queue utilization is larger, set the ’pac-
ingFlag’ field as TRUE.

(b) Otherwise, do nothing.

2. Check if ’pacingFlag’ is set to TRUE.

(a) If yes, do the following checks:
i. If ’writeCount[writerID]’ is larger than ’writes-

Limit’, sleep until a new interval starts.
ii. Otherwise, do nothing.

(b) Otherwise, do nothing.

This logic will be executed every time a writer calls
’writeQueue’.

11.4.2 Adjust Slow Readers
Pacing prevents the queue from being overwhelmed if

the readers are uniformly able to read the messages at
the same rate. In the case of a slow reader, the queue
utilization will still continue to grow. When the queue
utilization reaches the maximum, the responsible reader
is adjusted by skipping all its unread items. This logic
is mainly implemented in the ’writeQueue’ function.

1. Check if the queue is full.

(a) If it is full, find the slowest reader and ad-
just it by skipping all its unread items. For
each reader, check the nextItem[readerID] as
follows:

i. If nextItem[readerID] equals to ’head’, ad-
just this reader as mentioned.

In the ’readQueue’ function, suppose the queueID,
readerID and a pointer is passed in from a caller.

1. If head ¡= nextItem[readerID] ¡ tail , pass the old-
est message to the caller via the pointer and return
the number of remaining messages.

2. If nextItem[readerID] ¿= tail,block the caller until
a new message is written into the queue.

3. If nextItem[readerID] = READER SLOT AVAILABLE
, it means the reader has ceased and return READER SLOT AVAILABLE
to the caller.

If a caller receives READER SLOT AVAILABLE from
’readQueue’, that means the corresponding reader has
ceased. Then the caller may need to close thread and
release resources in this case.

31

11.5 Design Philosophy
The most important design issue here is how to han-

dle slow readers. As we discussed, it is essential that
some action be taken to address the problem of slow
readers. If no action is taken, a slow reader can cause
the queue to overflow and eventually data would be
dropped. This is particularly problematic if most read-
ers could read at a high rate and receive all the data,
but a few slow readers fill the queues and cause data
loss.

In the previous design, our solution is to identify and
then terminate the slow readers. However, by doing
that a potential problem is that the slow reader may
simply re-connect and thus drive the overall system into
a state of persistent oscillation. The system runs well
until the slow reader joins. The slow reader then causes
queues to build up and the reader is eventually killed.
The queue then quickly drains when the slow reader is
killed. Note that the queue contains at least one up-
date that has been read by everyone except the slow
reader. When the slow reader is killed, that update can
be discarded. In our experiments thus far, a typical slow
reader has hundreds of updates that are waiting only for
the slow reader; killing the slow reader immediately re-
moves these updates and frees hundreds of slots in the
queue. But oscillation occurs if the slow reader imme-
diately connects. The queue of unread updates begins
to build again as soon as the slow reader joins and the
cycle repeats. One can easily imagine a poorly written
slow reader that automatically reconnects anytime it is
disconnected.

An alternate approach is to better manage, but not
kill the slow readers. In current design, the slow reader
is not deleted from the system. Instead, slow readers
are forced to skip messages. From a queuing standpoint,
the effect is similar to killing the slow reader and works
as follows. When BGPmon determines a reader is read-
ing messages too slowly, all messages that have yet to
be read by that slow reader are immediately marked as
read. In this case the slow reader misses several mes-
sages, but it is allowed to continue.

12. LOGIN MODULE
The login module handles the Cisco-like commands

typed by logined users and calls the corresponding func-
tions provided by other modules. It is made up of sev-
eral pieces.

The first piece is a listener that listens on a spe-
cific address and port for new Command Line Interface
(CLI) connections. Once a connection has been estab-
lished then the next major piece, the command tree
structure, is used. This structure is a tree ADT that
contains a complete mapping of all the commands that
can be called from the CLI. Each command is broken
down into parts and each part is added to the tree. For

instance the command ’show running’ is broken into
two pieces. The ’show’ command is a child of the root
node and the ’running’ command is child of the ’show’
command. When a command is executed from the CLI,
the command is sent from the client to the server then
broken down and mapped into the command structure.
If the entire command can be mapped onto the tree
then the final node will contain a function pointer for
the command. Every node in the structure also has
an associated mask with it that controls whether the
command is visible or executable to a given security
level. All the commands have been organized in a way
that will help make maintenance of them easier. In
commandprompt.c there are a series of functions that
contain the necessary code to create the commands and
associations to the necessary functions. Then, there is
a series of files that end with ’ commands.c’ which con-
tain the functions for each module that the commands
reference.

13. ACKNOWLEDGEMENTS
Many of the design insights would not have been pos-

sible without the help of the Oregon RouteViews team,
the UCLA Internet Research Lab, and the Networking
Research Lab at University of Memphis, and the many
contributors from the Colorado State Network Security
Group.

14. REFERENCES
[1] D. Matthews, N. Parrish, H. Yan, , and D. Massey.

BGPmon: A real-time, scalable, extensible
monitoring system. Proceedings of the ACM
SIGCOMM Internet Measurement Confernce
(IMC), 2008.

[2] D. Matthews, H. Yan, , and D. Massey. BGPmon
Administrator’s Reference Manual, 2008.

[3] unknown. A border gateway protocol 4 (bgp-4).
http://www.ietf.org/rfc/rfc4271.txt.

[4] unknown. Mrt routing information export format.
http://www.ietf.org/internet-drafts/draft-ietf-
grow-mrt-11.txt.

[5] unknown. Ripe (rseaux ip europens) routing
information service.
http://www.ripe.net/projects/ris/.

[6] unknown. University of oregon route views project.
http://www.routeviews.org/.

[7] M. Welsh, D. Culler, and E. Brewer. Seda: an
architecture for well-conditioned, scalable internet
services. In SOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles,
pages 230–243, New York, NY, USA, 2001. ACM.

32

