
BGPmon:

Administrator’s Reference Manual

Colorado State University

February 3, 2011

1

Contents

1 Introduction 5
1.1 BGPmon Design Overview . 5
1.2 BGPmon Labeling . 5
1.3 BGP Monitor Chains . 5
1.4 BGP Monitor Configuration . 6
1.5 BGP Monitor Clients . 6
1.6 Organization of This Document . 6

2 Installing BGPmon 7
2.1 Hardware and CPU Requirements . 7
2.2 Memory Requirements . 7
2.3 Operating System Requirements . 7
2.4 Installation . 8
2.5 Launching BGPmon . 8

2.5.1 Optional BGPmon Command Line Arguments . 8

3 Configuring BGPmon 9
3.1 Logging Into BGPmon . 10

3.1.1 Site Specific Login Instructions . 10
3.1.2 BGPmon Login Recovery . 10

3.2 Configuring Login Access To BGPmon . 11
3.2.1 Configuring the login-listener . 11

3.3 Configuring Client Access . 12
3.3.1 Configuring the client-listener . 12

3.4 Access Control Lists . 13
3.4.1 ACL inverse mask logic . 13
3.4.2 Creating and Editing ACLs . 14
3.4.3 Deleting ACLs . 14

3.5 Configuring Chains . 14
3.5.1 Creating and updating a chain . 15
3.5.2 Delete a chain . 15

3.6 Configuring Peers and Peer Groups . 15
3.6.1 Creating Peers . 16
3.6.2 Creating Peer-groups . 16
3.6.3 Configuring Parameters . 16
3.6.4 Configuring Capabilities . 17
3.6.5 Deleting a peer . 17
3.6.6 Reseting a peer’s connection . 17

4 BGPmon Update Labels 18

5 BGPmon Chains 18

6 BGPmon Clients 18

7 TroubleShooting 18

8 Acknowledgements 18

A Command Line Interface Reference 19

2

B IP Address reference 25

3

List of Figures

List of Tables

4

1 Introduction

BGP Monitor (BGPmon) is a light-weight, scalable, and extensible system for monitoring BGP routing.
BGPmon collects routing data by imitating a real BGP router and peering with other BGP routers. All
routing updates received from the peers are converted into a convenient XML format and output to interested
clients. In addition, BGPmon can output periodic routing tables and control messages. BGPmon can also
label routing data to simplify later analysis.

BGPmon clients receive the data from one or more BGPmon instances and perform a variety of data
parsing tasks. Any program that can establish a TCP connection and parse XML can become a client. Some
clients archive updates to disk, other clients identify and forward only updates that meet some criteria, and
so forth. A number of BGPmon clients are provided as part of the base distribution.

1.1 BGPmon Design Overview

The BGPmon design extends the scalable event driven architecture in [3] to meet the requirements of BGP
monitoring. BGPmon is a stream based monitoring systems that receives BGP messages from peer routers,
performs some optional labeling, converts the data to an XML format, and passes the resulting data to clients
via TCP connections. BGPmon clients receive an event stream in real-time or may read historical event
streams from archival sources. The single stream incorporates both incremental BGP update messages and
periodic routing table snapshots. BGPmon uses XML to provide easy extensibility, integrate with common
tools, and allow local data annotations.

This document is intended for readers interested in installing, configuring, and using BGPmon.
Readers interested in the underlying design philosophy of the BGPmon system should refer to the tech-

nical paper[1]. Readers interested in understanding the implementation details of BGPmon or modifying
the source code should refer to the detailed technical specification found in [2].

1.2 BGPmon Labeling

In the BGPmon design, nearly all data processing is assumed to occur at the clients. However, BGPmon
can be configured to add labels to each update received from a BGP peer router. The labels produced by
BGPmon include:

NEWANN a NEW ANNouncement (prefix not previously reachable)
DPATH an update announcing a Different AS PATH
SPATH an update announcing the Same AS PATH, but some other change
DUPANN a DUPlicate ANNouncement (no change in any attribute)
WITH a WITHdraw (prefix no longer reachable)
DUPWITH a DUPlicate WITHdraw (unreachable prefix withdrawn)

In order to calculate labels, BGPmon stores RIB IN tables from each peer. But storing RIB IN tables
can consume substantial memory and add some minor additional computational costs. RIB IN tables can be
disabled on a per peer basis, but labeling is not possible if RIB IN tables are disabled. Labeling is discussed
further in Section 4.

1.3 BGP Monitor Chains

A single BGPmon instance can typically handle a large number of peers and clients. However, it may be
useful to run multiple instances of BGPmon and connect them together into a single chain. Data from
one BGPmon can be fed into an second BGPmon instance. Clients are oblivious to chains and, to client,
it appears as though all data is being collected by a single BGPmon instance. BGPmon chains provides
a range powerful options for scaling to vast numbers of peers, adding additional robustness, or separating
peering and collector functions.

5

For example, suppose an administrator in Denver wanted to monitor BGP routers at exchange points
in Los Angeles and London. A single BGPmon instance running in Denver could peer with routers at both
the Los Angeles and London exchange points. However, this requires the use of multi-hop BGP and if the
BGPmon instance fails, all data is lost. An alternate strategy would be to deploy a BGPmon instance in
London and second BGPmon instance in Los Angeles. The London and Los Angeles BGPmon instances
could chain to a third BGPmon instance in Denver. The LA and London BGPmon instances feed data to
the Denver instance which in turns provides data to clients. Clients are unaware if the data received comes
from a single instance or chain of BGPmons. Section 5 describes how to configure BGPmon chains.

1.4 BGP Monitor Configuration

BGPmon is designed to imitate a router and its configuration is similar to that of major router vendors. An
administrator logs into BGPmon and, after passing authentication checks, has access to the administrative
portion of BGPmon. Similar to the BGP routers sold by large vendors, there are two access levels. Initially,
an administrator is connected in access mode. Access mode allows the administrator to view statistics, show
routing tables, and generally view (but not change) configuration parameters. BGPmon may be configured
to allow arbitrary users to login and display statistics, similar to what a user could do if granted access to a
router at an ISP.

In order to change the configuration, the user must switch to enable mode. An administrator that has
entered enable mode can perform all BGPmon configuration actions such as adding, deleting, or modifying
BGP peers, disabling clients, setting access control policies, and so forth. All changes are stored in memory
and will be lost if BGPmon restarts. At any time, an administrator in enable mode can save the current
BGPmon configuration to a file. The configuration file can then be loaded if BGPmon restarts.

If no configuration file is specified at boot time, BGPmon attempts to load a default configuration
filename. If no configuration is specified and no default configuration file is found, BGPmon allows the
administrator to login on port 50,000. An alternate default port number can also be specified as a command
line parameter to bgpmon.

1.5 BGP Monitor Clients

The basic premise is that the BGPmon server simply collects and reports data. BGPmon does not archive
data or perform more complex analysis of the data. BGP Monitor clients perform a wide variety of tasks.
A client simply receives XML data from BGPmon via TCP connection and then performs the desired data
processing tasks. Users can build their own clients to suit individual needs. A small number of sample clients
and common used clients are included in the BGPmon distribution. Clients provided in the base distribution
include:

• BGP Data Archive Client: logs the updates received from BGPmon to disk and also periodically writes
routing tables (RIB INs) to disk.

• BGP Data Statistics Client: creates and maintains HTML pages that track the status of BGPmon.
The results can be displayed on a website to provide on-line tracing of BGPmon behavior.

• BGP Data Real-Time Filter: receives updates from BGPmon and passes only the updates matching a
configured criteria to downstream clients. This allows users to select a set of interesting updates from
the potentially vast volume of messages sent by BGPmon.

• BGP Sample Client: receives updates from BGPmon and acts as starting point for designing and
implementing additional site-specific clients.

1.6 Organization of This Document

Section 2 describes how to install the base BGPmon software and describes the resource requirements for
BGPmon. Section 3 describes how to login and modify the BGPmon configuration. Section 4 describes the

6

BGPmon labeling options. Section 5 describes how to configure multiple BGPmon instances into a chain.
Section 6 describes BGP Monitor clients, including both standard clients included in the base package and
guidelines for building new clients. Section 7 provides troubleshooting help and Section 8 acknowledges the
many people and organizations that helped develop BGP Monitor.

Appendix A describes the full set of commands available to BGPmon administrators.

2 Installing BGPmon

2.1 Hardware and CPU Requirements

The BGPmon server does not require specialized resources and is a designed to run on an off the shelf
unix box. Note that unlike a typically router implementation, BGPmon does not implement any routing
polices, perform any route selection, manage forwarding tables, or forward packets. The BGPmon server
simply maintains BGP peering sessions, optionally stores routing tables (RIB INs) for some peers, and passes
XML data to clients via TCP. The processing requirements are minimal and typical boxes can support large
numbers of peer connections.

BGP Monitor clients connect to BGPmon server via TCP and thus can run on the same machine or on
remote machines. For example, anyone can simply telnet to the appropriate BGPmon port and, assuming
they meet the access requirements configured by the administrator, begin receiving BGP data in XML
format. More sophisticated clients perform more resource intensive data analysis and archiving tasks. Any
program that can establish as TCP connection can become a client. Again no specialized resources are
required and clients in the base distribution run on an off the shelf unix box.

In a recommended configuration, a single box runs the BGPmon server along with a data archiving client
to store BGP data for later analysis. Any number of additional clients can connect to BGPmon and receive
BGP data in real-time. Adding additional BGP peers and/or clients increases the resources requirements.
Tests at Colorado State University have included dozens of peers and hundreds of clients running on a single
”off the shelf” server running the Ubuntu operating system.

2.2 Memory Requirements

In its simplest configuration, BGPmon has very little mandatory state and thus can operate with a very
small memory footprint. A small amount of state is kept for each peering session. As messages arrive from
a peer, they are temporarily stored in internal buffers as the messages move from the peering router to the
TCP output to clients. Even with hundreds of peers, BGPmon requires only a few megabytes of memory.

BGPmon memory requirements can increase dramatically when routing table (RIB IN) storage is enabled.
As updates are received from a peer, BGPmon can optionally keep track of the peer’s current routes in a
RIB IN table. The RIB IN tables are the primary memory requirements associated with BGPmon. As a
general rule of thumb, a peer announcing 250,000 routes will require a 25 MB RIB IN table

Disabling RIB IN storage for a peer decreases memory requires, but also prevents BGPmon from labeling
updates received from that peer. By comparing an update to the current RIB IN table, the BGPmon server
determines whether the update is a new announcement, path change, duplicate update and so forth as
discussed above. This labeling is only possible if RIB IN storage is enabled for the peer.

The RIB IN may be used to periodically report the table to clients if the peer does not support BGP route
refresh. In most cases, BGPmon periodically re-announces the peers routing table to clients by requesting
a route refresh from the peer. If the peer does not support route refresh, BGPmon attempts to imitate a
route refresh by reporting the RIB IN file. Periodic routing tables will not be available if the peer router
fails to support route refresh and BGPmon has been configured to not store RIB IN tables for the peer.

2.3 Operating System Requirements

BGPmon and its clients were developed on Ubuntu and Fedora systems with the objective of being platform
independent.

7

Ports to other unix operating systems are encouraged and some limited help is available from the BGP
Monitor team.

In the BGPmon source code, the file README PORTS lists other successful ports and provides instruc-
tions for porting to other operating systems.

2.4 Installation

To install the BGP Monitor package, use:

configure
make
make install

This builds the BGPmon server and installs the server bgpmon. In addition, the BGPmon clients
discussed in Section 6 are also built and installed.

On a default unix install, the BGPmon server is installed in /usr/local/sbin/bgpmon and clients are
installed in /usr/local/bin/bgpmon clientname.

2.5 Launching BGPmon

To start BGPmon, simply launch the server using:

bgpmon

By default, bgpmon tries to load a configuration file called bgpmon config.txt. If no pre-existing configu-
ration file is found, the server starts by listening administrator login on port 50,000.

If this is the first time you are using BGPmon, there is no existing configuration file and server is waiting
for an administrator to login on port 50,000. The login port can also be set using command line arguments
described in the next subsection. Using the steps discussed in Section 3, an administrator can login and add
BGP peers, set access control rules for both future configuration and client access, create BGPmon chains,
and apply a variety of optional settings. At a minimum, an administrator will need to configure BGPmon
to receive data from at least on BGP peer router (or a BGPmon chain) and allow BGPmon to provide data
to at least one client.

2.5.1 Optional BGPmon Command Line Arguments

Nearly all configuration is done by loggin into BGPmon as discussed in Section 3. However, BGPmon has
several optional command line arguments that can useful for some scenarios. Each of these optional values
is discussed below.

• -r recovery-port : instructs BGPmon to allow administrator login on the specified port. If this option is
not specified, BGPmon uses the port specified in the configuration file or port 50,000 if no configuration
file is found. Section 3.2.1 describes how to set the login-listener port and save the setting in the
configuration file.

The -r recovery-port option is intended as a temporary bypass in case either 1) this is the first time
BGPmon is running it needs to allow login on a port other than 50,000 or 2) the login port set in the
configuration file is no longer valid and must be over-ridden. The -r recovery-port option takes
precedence over any login port found in Configuration File.

• -c filename: provides the name of a configuration file to load. The configuration file provides essential
information such as the peers to monitor, client access control, and so forth. If no configuration file
is specified, bgpmon attempts to load a default configuration file name, bgpmon config.txt. If the

8

configuration file is not found, BGPmon simply waits for an administrator to login and configure
BGPmon.

Most users will not need to use the -c filename option. Unless you specified otherwise, saving a con-
figuration creates the file bgpmon config.txt and this file is loaded by default when BGPmon restarts.
If you plan to have only one BGPmon configuration file, the default configuration file name of bgp-
mon config.txt is strongly recommended. A site with multiple, distinct configurations may wish to use
other file names and can specify which of the multiple configuration files to load using the -c filename
option.

• -i : sets bgpmon to run in an interactive mode and sends all messages to stdout. Interactive mode is
useful for debugging, especially in port BGPmon to new operating systems or troubleshooting instal-
lation problems. If this option is not specified, BGPmon writes all messages using the syslog facility.

• -s : sets bgpmon to run in an syslog mode and sends all messages to the syslog facility. Syslog mode
is recommended and syslog settings can be used to direct BGPmon output to specific file, control the
level of output, and so forth.

The -i and -s options are mutually exclusive and the program exits with an error if both are specified.
If neither option is specified, BGPmon logs messages in syslog mode. A site administrator may modify
the source code in order to change the default setting to interactive mode, see [2] for instructions on
modifying the default settings.

• -l loglevel option specifies the log level and uses the standard syslog values as follows. Emergencies,
Alerts, Critical Errors, and Errors are levels 0 to 3 (respectively). These messages are always logged
regardless of the log level setting. Warnings, Notices, Information, and Debug output are levels 4 to 7
(respectively). Setting loglevel = L will log all messages at and below the L. For example, a log level of
4 will display Alerts, Critical Errors, Errors, and Warnings, but will not display Notices, Information,
or Debugging output. If the -l loglevel option is not specified, a default logvalue of level 4 (Warning)
is used. A site administrator may modify the source code in order to change the default logvalue, see
[2] for instructions on modifying the default settings.

• -l loglevel option specifies the syslog Facility. This option has no effect if messages are written to
standard output (e.g. if -i was specified). If the -f facility option is not specified, a default syslog
facility of USER is used. A site administrator may modify the source code in order to change the
default logvalue, see [2] for instructions on modifying the default settings.

3 Configuring BGPmon

To configure BGPmon a user must first login to the Command Line Interface. Once connected, a user is
initially set to guest mode which allows them to view statistics, show routing tables, and generally view (but
not change) configuration parameters. In order to change the configuration settings, a user must switch to
privileged mode. In this mode a user can perform BGPmon configuration actions such as adding, deleting, or
modifying BGP peers and chains, disabling clients, and setting access control policies. At any time, a user
in privileged mode, can save the current BGPmon configuration so it will be loaded the next time BGPmon
starts. Any configuration changes are stored in memory and will be lost if BGPmon restarts.
To make changes permanent, the administrator must save the BGPmon configuration.

This section describes how to configure BGPmon, beginning with logging into BGPmon and proceeding
through the steps to configure future login access, enable clients, configure chains, create peers, and finally
set optional parameters. A first time administrator should read each subsection in order and follow the
configuration steps in that section. An experienced administrator may want to skip directly to the relevant
subsection. A complete command reference is also available beginning in Appendix A.

9

3.1 Logging Into BGPmon

To log into the BGPmon server first ensure that it’s running. Instructions for starting the server can be
found in Section 2.5. If BGPmon wasn’t previously configured then it will be listening on the loopback ad-
dress and port 50,000 for incoming connections. From the same machine used to start BGPmon, simply enter:

telnet loopback 50,000

Some operating system and/or DNS setups will not recognize the name loopback. If the name loopback
is not recognized, you can use the loopback IP address instead of the name loopback. For IPv4, the loopback
address is 127.0.0.1 and for IPv6, the loopback address is 0:0:0:0:0:0:0:1.

After connecting to BGPmon, you will be prompted for a guest password. By default, the guest password
is ’BGPmon’. Initially, a user is connected in guest mode and must change to privileged mode to alter the
server’s configuration settings. To enter privileged mode, type:

enable

You will then be prompted for the enable password, which is also ’BGPmon’ by default. From privileged
mode you need to enter configure mode to gain access to all the configuration commands. To enter this mode
type:

configure

Now you are ready to configure BGPmon. It is recommended you begin by changing the default passwords
and configuring future login access addresses, ports, and restrictions as discussed in Section 3.2.

3.1.1 Site Specific Login Instructions

The following steps are used login to BGPmon:

telnet <address> <port>
<enter guest password>
enable
<enter privileged password>
configure

The address, port, and passwords are all settings that depend on how BGPmon was configured. By
default, the address is either 127.0.0.1 (IPv4 machines) or 0:0:0:0:0:0:0:1 (IPv6 machines), the port is 50,000,
and both passwords are ’BGPmon’. The local BGPmon administrator may also have created access control
lists that restrict which machines can login to BGPmon. If the default values do not work, you need
to obtain the proper values from the local BGPmon administrator.

If you are the BGPmon administrator and have lost the login settings, Section 3.1.2 describes how to
reset these values without losing the other configuration information.

3.1.2 BGPmon Login Recovery

Due to configuration errors and/or misplaced information, an administrator may be unable to login to
BGPmon. For example, the administrator may have lost the guest password or, in a more complex scenario,
setup an overly aggressive access control list to the BGPmon Command Line Interface. In these cases, the
administrator has four options for recovery.

The first option is to use the -r recovery-port parameter described in section 2.5. This parameter will
override the login-listener’s port so an administrator can still use the Command Line Interface if there is a
conflict between BGPmon and another application trying to use the same port. However, the recovery-port
will not allow an administrator to bypass the ACL specified for the login-listener. If this is the problem then

10

one of the following options for recovery must be used. The second option can be used in cases where the
configuration is simple or very close to the default settings. Simply delete the active configuration, which is
stored in ’bgpmon config.txt’, and let BGPmon start with the default settings. Then make any necessary
changes to the BGPmon configuration and save the settings.

There are many times where starting over or simply bypassing the default port won’t be a viable option
and for these cases there are several other options. The first is trying to recover an old configuration. Any
configuration changes that are saved will be written into ’bgpmon config.txt’. Every time a new configuration
is saved the old configuration is archived in the same directory with the time and date preceding the file
name. An example archived configuration file is ’1041 2252009 bgpmon config.txt’, which was created at
10:41am on 02/25/2009. To find a suitable recovery point, start by backing up the current configuration
then copying the archived configuration over the current configuration. Hopefully within a few tries a good
recovery point can be identified.

The final option is to manually edit the active configuration with a text editor. It’s easy to manually
edit the active configuration for BGPmon since all settings are stored as XML in ’bgpmon config.txt’. By
comparing the last known good configuration and the current configuration all changes between these versions
can be identified then reapplied to the current configuration. Just be careful to make changes slowly until
the unwanted change to BGPmon is identified and corrected.

3.2 Configuring Login Access To BGPmon

Login access is controlled in BGPmon by the login-listener. This module will bind to an address and port
then listen for incoming Command Line Interface connections. When a connection is established it will check
to see if the address of the new connection is allowed or disallowed based on rules setup in the Access Control
List. Use the following commands to see what the current settings of the login-listener are:

Address:
show login-listener address

Port:
show login-listener port

Access Control List:
show login-listener acl

3.2.1 Configuring the login-listener

There are three main components that can be configured for login-listener. First is the address that the
login-listener will attempt to use when BGPmon starts. To change the login-listener’s address simple type
the following command:

login-listener address new-address

BGPmon will check the new-address to make sure that it’s a valid IP address and is available on the local
machine. If the address isn’t valid then a warning will be returned and nothing is set. Also, any loopback
address in Appendix B can be used.

The next major component to configure is the port. To change the port, type the following command:

login-listener port new-port

BGPmon will check to make sure the new-port is a valid port number but will not check to see if the port
can be bound. So, if the port for the login-listener is set to an unavailable port and BGPmon is restarted

11

then the Command Line Interface will not be available upon restart. If this happens see section 3.1.2 about
recovering.

The final component for the login-listener is the Access Control List, which is the list that controls which
addresses are allowed to connect or not connect. To set the active ACL, type the following:

login-listener acl acl-name

BGPmon will check to make sure the acl-name is valid within BGPmon before setting it. Refer to section
3.4 to learn about configuring Access Control Lists.

3.3 Configuring Client Access

Similar to the login-listener, client access is controlled in BGPmon by the client-listener. This module will
bind to an address and port then listen for incoming connections. When a connection is established it will
check to see if the address of the new connection is allowed or disallowed based on rules setup in the Access
Control List. Use the following commands to see what the current settings of the client-listener are:

Address:
show client-listener address

Port:
show client-listener port

Access Control List:
show client-listener acl

Status:
show client-listener status

3.3.1 Configuring the client-listener

There are four main components that can be configured for the client-listener. Any change made to these
components will result in the client-listener stopping then starting, if necessary, with the new values. The first
component is the address that the client-listener will use. To change the address type the following command:

client-listener address new-address

BGPmon will check the new-address to make sure that it’s a valid IP address and is available on the
local machine. Also, any loopback address in Appendix B can be used.

The next major component to configure is the port. To change the port, type the following command:

client-listener port new-port

BGPmon will check to make sure the new-port is a valid port number but will not check to see if the
port can be bound until the client-listener stops then attempts to start again.

The next component for the client-listener is the Access Control List, which is the list that controls which
addresses are allowed to connect or not connect. To set the active ACL, type the following:

client-listener acl acl-name

12

BGPmon will check to make sure the acl-name is valid within BGPmon before setting it. Refer to section
3.4 to learn about configuring Access Control Lists.

The final component is the status, which can be set to either enabled or disabled. Use the following
commands to change the status:

client-listener acl {enable | disable}

3.4 Access Control Lists

Access Controls Lists are used within BGPmon to control which addresses are or aren’t allowed to connect.
BGPmon initially comes with two ACLs: ’denyall’ which denies all traffic and ’permitall’ which permits all
traffic. To see a list of ACLs that are available, type the following command:

show acl [acl name]

The optional parameter, acl name, can be included to limit the results to a specific ACL. When an ACL
is returned it will list the name of the ACL and all the associated rules. Below is example output:

ACL name:denyall
index address mask allowed
0 any any deny

ACL name:permitall
index address mask allowed
0 any any permit

ACL name:testacl
index address mask allowed
0 192.168.0.0 255.255.0.0 permit
1 any any deny

3.4.1 ACL inverse mask logic

Access Control Lists in BGPmon are designed to give administrators a way of controlling which addresses
are allowed to connect and which are not. Each ACL is made up of a series of rules and each rule is made
up of three components. The first two components, address and mask, are used to determine whether the
rule is applicable to the incoming address. The third component, allowed, tells BGPmon whether to permit
or deny applicable addresses.

Below is an example of how BGPmon determines if a rule is applicable to incoming address. The first
step is to OR the rule’s address and mask together then OR the incoming address and mask together. Sub-
tracting these two results will indicate whether a rules is applied. A zero value means that the rule is applied
and a non-zero value means that the rule does not apply.

Example 1
String Binary

Incoming address 10.1.1.255 00001010 00000001 00000001 11111111
Rule address 10.1.1.1 00001010 00000001 00000001 00000001
Rule mask 0.0.255.255 00000000 00000000 11111111 11111111

incoming address | mask 00001010 00000001 11111111 11111111
rule address | mask 00001010 00000001 11111111 11111111
zero difference - rule should be applied 00000000 00000000 00000000 00000000

13

Example 2
String Binary

Incoming address 10.1.255.255 00001010 00000001 11111111 11111111
Rule address 10.1.1.1 00001010 00000001 00000001 00000001
Rule mask 0.0.0.255 00000000 00000000 00000000 11111111

incoming address | mask 00001010 00000001 11111111 11111111
rule address | mask 00001010 00000001 00000001 11111111
non-zero difference - rule should not be applied 00000000 00000000 11111110 00000000

3.4.2 Creating and Editing ACLs

To either create or edit an ACL type the following:

acl acl name

This command will attempt to open the specified ACL. If it’s not found then a new ACL is created.
Within the ACL edit mode there are several commands that allow the user to maintain an ACL.

The first set of commands are used to create ’permit’ or ’deny’ rules.

permit any [rule index]
permit address mask [rule index]
deny any [rule index]
deny address mask [rule index]

In each of these commands either the ’permit’ or ’deny’ keyword is specified then followed by a series
rules that indicates the range of addresses the rule applies to. The parameter address is the IP address
used in the rule. The parameter mask is used to specify which bits in the address are significant and which
should be ignored. If a rule should be applied to all addresses then use the keyword ’any’ instead of the
address/mask pair. Finally the optional parameter rule index, if set, will be used to specify where in the
list the rule should be inserted. When a rule is inserted at a rule index, then all rules that follow will be
incremented by one.

To remove a rule from the list use the following command:

no rule index

When a rule is removed from the list all other rules in the list will be re-indexed while maintaining their
relative ordering.

3.4.3 Deleting ACLs

To delete an ACL and all associated rules use the following command:

no acl acl name

It is important to note that when an ACL is removed, any modules using that ACL will be set to the
default behavior, which is to deny all traffic.

3.5 Configuring Chains

Chaining is used in BGPmon to connect multiple versions of BGPmon together so XML messages from one
BGPmon instance can be sent to another BGPmon instance.

14

3.5.1 Creating and updating a chain

To create a chain use the following command:

chain address [port] [enable | disable] [retry:retry interval]

The only required parameter is address and any parameter which is not specified will have a default value
assigned to it. The defaults are as follows: port is 50,001, chain status is enabled, and retry interval is 60.
Once a chain has been created, the same command can be used to update settings for that chain.

For example, assume a chain was created with the following command:

chain 192.168.1.1

To set the status of this chain to disabled and retry interval to 10, use the following command:

chain 192.168.1.1 disable retry:10

One important thing to remember about creating chains is that the address and port uniquely identify a
chain. So, assume a chain is created with the following command:

chain 192.168.1.1

Now, assume this command is run:

chain 192.168.1.1 50002

The second command will create a new chain at 192.168.1.1 on port 50002 while the first chain will
remain at 192.168.1.1 on port 50001. Once a chain has been created its address and port cannot
updated. Any command attempting to do this will create another chain.

3.5.2 Delete a chain

A chain can be deleted with the following command:

no chain address [port]

A port doesn’t need to be specified if the default port was used when creating the chain. When this
command is issued BGPmon will set the chain to disabled then then mark the chain to be deleted.

3.6 Configuring Peers and Peer Groups

A Peer is the connection that BGPmon maintains with a router and every Peer has its own set of configurable
parameters. Peer Groups are a way of sharing configurations between sets of Peers .

The first step in configuring a peer is to enter the router configuration mode. To do this, enter the
following command from the configuration mode prompt:

router bgp AS Number

The AS Number entered will be used as the local AS number for any peers that are created. Every
command associated with a peer or peer-group in this mode follows the same structure: a base command
used to identify the peer or peer-group followed by a command to modify that peer or peer-group. The base

15

of the command is as follows:

neighbor {address | peer-group } [port neighbor-port]

If a valid IP address is specified for the address then the command will refer to a peer. The optional
neighbor-port parameter can then be used to specify a custom port, otherwise the default port 179 will be
used. If the address is not a valid IP address then the command will refer to a peer-group.

3.6.1 Creating Peers

To create a peer run any command where the base command has a valid address. If the peer does not exist
then BGPmon will attempt to create the peer. Example:

neighbor 192.168.1.1 [port 4626] announce ipv4 unicast

If no pre-existing peers are configured, then this command would create a peer with an address of
192.168.1.1 and a port of 4626.

3.6.2 Creating Peer-groups

To create a peer-group the following command is used, where peer-group will be the name of the peer-group
and not a valid IP address:

neighbor peer-group peer-group

Once a peer-group has been created then peers can be assigned to the group with the following command:

neighbor address [port neighbor port] peer-group peer group name

A peer can be moved to another peer-group with the same command and use the following command to
remove a peer from a peer-group:

neighbor address [port neighbor port] peer-group peer group name

3.6.3 Configuring Parameters

Within a Peer or Peer-group there are many different parameters that can be configured. The first group
are the commands that configure parameters for the remote and local BGP versions. These commands are
as follows:

neighbor {address | peer-group } [port neighbor port] {remote | local} as [as number]
neighbor {address | peer-group } [port neighbor port] {remote | local} bgpid [bgpid]
neighbor {address | peer-group } [port neighbor port] {remote | local} bgp-version [bgp version]
neighbor {address | peer-group } [port neighbor port] {remote | local} hold-time [hold time]

The second group of commands are the labeling commands. These commands control how messages are
labeled in each peer:

neighbor {address | peer-group } [port neighbor port] label-action NoAction
neighbor {address | peer-group } [port neighbor port] label-action Label

16

neighbor {address | peer-group } [port neighbor port] label-action StoreRibOnly

The final group of commands are commands used to control the actual peer. These commands will trigger
a route-refresh, enable and disable a peer, and set the md5 encryption for a password.

neighbor {address | peer-group } [port neighbor port] route-refresh
neighbor {address | peer-group } [port neighbor port] enable
neighbor {address | peer-group } [port neighbor port] disable
neighbor {address | peer-group } [port neighbor port] md5 [md5 password]

3.6.4 Configuring Capabilities

For every peer there are a set of announce and receive capabilities that can be configured:
Announce capabilities:

neighbor {address | peer-group } [port neighbor-port] announce code length value

neighbor {address | peer-group } [port neighbor-port] announce {ipv4 | ipv6} {unicast | multicast}

Receive capabilities:

neighbor {address | peer-group } [port neighbor-port] receive {require | refuse | allow} code

length value

neighbor {address | peer-group } [port neighbor-port] receive {require | refuse | allow} {ipv4
| ipv6} {multicast | unicast}

3.6.5 Deleting a peer

To delete a peer, use the following command:

no neighbor address [port port]

To delete a peer-group, use the following command:

no neighbor peer-group

3.6.6 Reseting a peer’s connection

Reseting a peer will close the peer’s connection then attempt to reopen it. Any new settings that have been
applied to the peer will be applied when the peer starts again. To reset a connection to a peer use the
following command:

clear neighbor address [port port]

17

4 BGPmon Update Labels

5 BGPmon Chains

6 BGPmon Clients

7 TroubleShooting

8 Acknowledgements

18

A Command Line Interface Reference

Privilege Level: Access Control List Configuration
Mode commands:

exit - Sets the security level of the current user back to Configure.

end - Sets the security level of the current user back to Privileged.

Rule commands:
no rule number - Deletes an ACL rule based on the rule number.

no permit rule number - Deletes a permit ACL rule based on the rule number.

no deny rule number - Deletes a deny ACL rule based on the rule number.

no label rule number - Deletes a deny ACL rule based on the rule number.

no ribonly rule number - Deletes a deny ACL rule based on the rule number.

permit any [rule index] - Creates a rule that permits any address. If this rule is applied to
the Quagga module then only updates are allowed from the address.

deny any [rule index] - Creates a rule that denies any address.

label any [rule index] - Creates a rule that allows only LABEL messages. This rule should
only be applied to the Quagga module.

ribonly any [rule index] - Creates a rule that allows only RIB messages. This rule should
only be applied to the Quagga module.

permit address mask [rule index] - Creates a rule that permits any address which matches
the address and mask combination specified in the rule. If this rule is applied to the Quagga
module then only updates are allowed from the address.

deny address mask [rule index] - Creates a rule that denies any address which matches the
address and mask combination specified in the rule.

label address mask [rule index] - Creates a rule that allows LABEL messages from an
address which matches the address and mask combination specified in the rule.

ribonly address mask [rule index] - Creates a rule that allows only RIB messages any
address which matches the address and mask combination specified in the rule.

19

Privilege Level: Router Configuration
Announce and Receive commands:

neighbor {peer-group | address} [port neighbor port] announce code length value - Adds
a custom announce capability to the neighbor or peer-group specified.

neighbor {peer-group | address} [port neighbor port] announce {ipv4 | ipv6} {unicast |
multicast} - Adds a predefined announce capability to the neighbor or peer-group specified.

neighbor {peer-group | address} [port neighbor port] receive {require | refuse | allow}
code length value - Adds a custom receive capability to the neighbor or peer-group specified.

neighbor {peer-group | address} [port neighbor port] receive {require | refuse | allow}
{ipv4 | ipv6} {multicast | unicast} - Adds a predefined receive capability to the neighbor
or peer-group specified.

Creating a peer-group:
neighbor peer-group peer-group - Creates a peer-group.

neighbor address [port neighbor port] peer-group peer group name - Assigns a peer to a
peer-group.

Mode commands:
exit - Sets the security level of the current user back to Configure.

end - Sets the security level of the current user back to Privileged.

Remote and Local commands:
neighbor {peer-group | address} [port neighbor port] {remote | local} as [as number] -
Sets either the remote or local AS number for a peer or peer-group.

neighbor {peer-group | address} [port neighbor port] {remote | local} bgpid [bgpid] -
Sets either the remote or local BGPID for a peer or peer-group.

neighbor {peer-group | address} [port neighbor port] {remote | local} bgp-version

[bgp version] - Sets either the remote or local BGP version for a peer or peer-group.

neighbor {peer-group | address} [port neighbor port] {remote | local} hold-time

[hold time] - Sets either the remote or local hold-time for a peer or peer-group.

Upadating a peer or peer-group:
no neighbor {peer-group | address} - Deletes a neighbor or peer-group.

clear neighbor address [port neighbor port] - Resets the connection with the neighbor.

neighbor {peer-group | address} [port neighbor port] enable - Enables a peer’s connection.

neighbor {peer-group | address} [port neighbor port] label-action NoAction - Sets the
labelling action for a peer-group or peer to NoAction, stopping all labelling.

neighbor {peer-group | address} [port neighbor port] label-action Label - Sets the labelling
action for a peer-group or peer to Label, starting all labelling.

neighbor {peer-group | address} [port neighbor port] label-action StoreRibOnly - Sets
the labelling action for a peer-group or peer to StoreRibOnly, stopping labelling but storing
the RIB-IN table.

neighbor {peer-group | address} [port neighbor port] route-refresh - Triggers a route-
refresh for that peer from the BGPmon RIBIN table.

neighbor {peer-group | address} [port neighbor port] md5 [md5 password] - Sets the MD5
password used in authenticating with a peer.

neighbor {peer-group | address} [port neighbor port] disable - Disables a peer’s connection.

20

Privilege Level: Configuration
ACL commands:

no acl acl name - Deletes an Access Control List.

acl acl name - Creates a new ACL or opens an existing ACL then changes the security level
of the user to ACL Configuration.

Chain commands:
chain address [port] [enable | disable] [retry:retry interval] - blah

no chain address [port] - Deletes a Chain.

Client commands:
client-listener update address local-address - Sets the address that the client update lis-
tener will listen on.

client-listener update port port - Sets the port that the client update module will listen
on for new client connections.

client-listener update acl acl name - Sets the ACL which will be applied to the clients
update modules.

client-listener rib address local-address - Sets the address that the client rib listener will
listen on.

client-listener rib port port - Sets the port that the client rib module will listen on for new
client connections.

client-listener rib acl acl name - Sets the ACL which will be applied to the clients rib
modules.

client-listener {enable | disable} - Enables or disables the listener, both update and rib,
for the client module.

Login commands:
login-listener address local-address - Sets the address that the login-listener will listen on.

login-listener port port - Sets the port that the login-listener will listen on.

login-listener acl acl name - Sets the ACL that will be applied to the login-listener.

Mode commands:
exit - Sets the security level of the current user to Privileged.

end - Sets the security level of the current user to Privileged.

Neighbor commands:
router bgp monitor AS number - Allows the user to enter Router Configuration mode
where peers and peer groups can be modified.

Periodic commands:
periodic route-refresh route refresh -

periodic status-message status message -

Queue commands:
queue pacingOnThresh pacingOnThresh - Modifies the pacing-on threshold value for
queues.

queue pacingOffThresh pacingOffThresh - Modifies the pacing-off threshold value for
queues.

queue alpha alpha - Modifies the alpha value for queues.

queue minWritesLimit minimum write limit - Modifies the minimum write limit for
queues.

queue pacingInterval pacing interval - Modifies the maximum write limit for queues.
21

Privilege Level: Privileged
Client commands:

kill client client id - Disconnects the client specified by the client id.

Configuration commands:
copy running-config filename - Copies the running configuration to a filename specified.

copy running-config startup-config - Copies the running configuration to the startup
configuration.

shutdown - Shuts down the bgpmon server.

Mode commands:
configure - Sets the security level of the current user to Configure.

disable - Sets the security level of the current user back to Guest.

exit - Exits the BGPmon Command Line Interface.

22

Privilege Level: Guest
ACL commands:

show acl [acl name] - Shows the details of an Access Control List.

Chain commands:
show chains [chain id] - Shows information about one or all currently configured chains.

Client commands:
show clients - Shows the list of users actively connected on the Client module.

show client-listener status - Shows the status of the Client-listener.

show client-listener update port - Shows the current port for the client-listener’s update
channel.

show client-listener update address - Shows the current address for the client-listener’s
update channel.

show client-listener update acl - Shows the Access Control List assigned to the client-
listener’s update channel.

show client-listener rib port - Shows the current port for the client-listener’s rib channel.

show client-listener rib address - Shows the current address for the client-listener’s rib
channel.

show client-listener rib acl - Shows the Access Control List assigned to the client-listener’s
rib channel.

Configuration commands:
show running - Shows running configuration for the instance of BGPmon.

Login commands:
show login-listener port - Shows the current port for the login-listener.

show login-listener address - Shows the current address for the login-listener.

show login-listener acl - Shows the Access Control List assigned to the Command Line
Interface module.

Mode commands:
enable - Sets the security level of the current user to Privileged.

exit - Exits the BGPmon Command Line Interface.

Neighbor commands:
show bgp neighbor [neighbor address] port [neighbor port] - Shows information about a
configured peer.

Periodic commands:
show periodic route-refresh - Shows the route-refresh interval.

show periodic route-refresh status - Shows the status, enabled or disabled, of route-refresh.

show periodic status-message - Shows the status message interval.

Quagga commands:
show quagga-listener status - ****Shows the status of the quagga-listener.

show quagga-listener port - ****Shows the current port for the quagga-listener.

show quagga-listener address - ****Shows the current address for the quagga-listener.

show quagga-listener acl - Shows the Access Control List assigned to the quagga-listener.

23

Privilege Level: Guest
Queue commands:

show queue - Shows general information about the Queues.

show queue PeerQueue - Shows general information about Queues and information specific
to the Peer Queue.

show queue LabelQueue - Shows general information about Queues and information specific
to the Label Queue.

show queue XMLUQueue - Shows general information about Queues and information spe-
cific to the XML Queue that contains all update messages.

show queue XMLRQueue - Shows general information about Queues and information spe-
cific to the XML Queue that contains all the RIB table messages.

24

B IP Address reference

Shortcut Version Actual
ipv4any IPv4 any address
ipv6any IPv6 any address
ipv4loopback IPv4 loopback address = 127.0.0.1
ipv6loopback IPv6 loopback address = ::1

25

References

[1] D. Matthews, N. Parrish, H. Yan, , and D. Massey. BGPmon: A real-time, scalable, extensible monitoring
system. Proceedings of the ACM SIGCOMM Internet Measurement Confernce (IMC), 2008.

[2] D. Matthews, H. Yan, , and D. Massey. BGPmon Implementation and Technical Specification, 2008.

[3] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for well-conditioned, scalable internet services.
In SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating systems principles, pages 230–
243, New York, NY, USA, 2001. ACM.

26

