
BGPmon: Using Real-Time Data in Research and Operations

1 Introduction

Monitoring BGP[1] routing is important for both opera-
tions and research. To provide access to BGP data, a num-
ber of public and private BGP monitors are deployed and
widely used [2, 3]. BGPmon is part of the Oregon Route-
Views project[2] and uses a publish/subscribe overlay net-
work to provide real-time access to vast numbers of peers
and clients. For over decade, RouteViews has collected
BGP routing updates and BGP routing tables from routers
around the globe. This data, in MRT format[4], is publicly
available from http://archive.routeviews.org. The archives
include historical data dating back a decade as well as rela-
tively recent data (within the last few minutes/hours). BGP-
mon builds on this successful system and extends this in-
frastructure in three ways.

First, BGPmon provides a real-time feed of both BGP
updates and routing tables. Instead of downloading data
from a site (which could incur delays of hours), a user can
simply open a TCP connection and receive that data in real-
time (which incurs a delay on the order of network prop-
agation times). This change to easily accessible real-time
data opens up a range of new opportunities for tools and
live analysis.

Second, BGPmon provides the data in an XML for-
mat. The format includes both binary “bits off the wire”
attributes and more human/parser friendly ASCII text in the
same message format. Since the format is XML, users can
easily add new tags while still maintaining a consistent for-
mat that can be shared between sites. A site might tag par-
ticular messages with a local attribute (such as my prefix
or some other label meaningful only to that site). Other
sites can still use the data, either stripping the tag before ex-
changing data if that tag has private information or simply
sending the data with the new tag as other XML parsers can
simply ignore unrecognized tags. Similarly, a site can easily
drop some tags from the format.

For example, BGP messages must include a timestamp.
However different applications may desire different types
of time representations. In some cases, a unix timestamp
is the preferred representation and the MRT format uses a
unix timestamp. But while timestamps are convenient for
coding, other applications may want a finer granularity of

milliseconds. In yet another example, if the data is to be
viewed by humans rather than processed by code, a human
friendly representation listing year, month, day, and time is
preferred. The XML format supports all three ways of dis-
playing time. In fact, the XML stream includes all three
time representations (using different XML attributes in the
<TIME> section of the message). Applications desiring
one time format can simply use that attribute and ignore the
others. Applications can also strip out the other time repre-
sentations to save space and later other users can reconstruct
the human friendly time from the timestamp (or vice versa).

Third, for users gathering their own data or aggregating
streams of data, BGPmon provides a new approach to data
collection. Existing monitors typically collect data using a
full implementation of a BGP router. In contrast, BGPmon
eliminates the unnecessary functions of route selection and
data forwarding to focus only on the monitoring function.
In its place, BGPmon adds chaining functions so that feeds
can better scale and can be combined to a large-scale mesh
monitoring infrastructure. For example, one can take the
real-time feed from RouteViews, chain it with feeds from
local BGPmon, and direct the results into a few servers that
provide the organization with real-time BGP access.

2 Background

Before introducing our new BGP Monitoring system, we
will review already existing Routing Collectors (RC) in the
Internet. Oregon RouteViews [2] and RIPE RIS[3] projects
provide a routing data to interested researchers and opera-
tors by establishing a BGP peering agreements with differ-
ent ISP’s around the world. Typically, RC is simply another
BGP peer router, it does not advertise any routes to peers, it
receives and logs the BGP messages from neighbor ISP’s.

Currently, RouteViews project provides update files that
are roughly 15 minutes in duration and provides routing ta-
ble snapshots every 2 hours. This is sufficient for analysis
of past events, but real-time monitoring of BGP activity re-
quires update files be available in seconds. For example,
BGP prefix hijack alert systems would like to detect a po-
tential route hijack within a few seconds. At best, today’s
RouteViews system only allows hijack alert systems to re-
port hijacks that occurred many minutes ago.

1



In addition to providing data in real-time, an ideal BGP
monitoring system would scale to dramatically increase the
number of peers providing data. Given data from more lo-
cations, BGP analysis systems and tools could potentially
provide better answers. For example, a BGP prefix hijack
may only be visible in a small portion of the network and
ideally one would like to have a monitor present in that same
portion of the network. Thus our goal is not only to make
the data available in real-time, but also to dramatically in-
crease the volume of data available.

In summary, already existing Routing Collector systems
are useful, but it would be useful to make the routing data
available in real-time, provide the data in an extensible
XML format, and simultaneously increase the amount of
data collected and dramatically increase the number of lo-
cations obtaining the data. All this should occur without
lose of data fidelity.

3 BGPmon: Using the Data

3.1 Receiving Routing Data

BGPmon can provide a real-time routing event stream to
a large number of clients. All routing events are integrated
into two XML streams: update and RIB-IN streams. Both
streams send ongoing messages in XML format. XML was
chosen as the message format for the streams because it is
extendable, for both clients and servers, and also readable
by both applications and humans.

BGPmon peers with a number of routers (peers), ei-
ther directly or via chains to other BGPmon instances.
Each BGP update message[5] from a peer is converted to
XML format and forwarded to the update stream queue.
The resulting data can be filtered with simple parser li-
braries like LibXML2[6] or Expat[7]. People, interested
in receiving XML stream of BGP update events, should
establish the TCP connection to BGPmon server live-
bgp.netsec.colostate.edu port 50001 or run simple telnet
command to become familiar with XML message format.

BGPmon also stores RIB-IN tables on a per-peer ba-
sis. For each incoming BGP update message from a peer,
BGPmon stores it in the peer’s RIB-IN table. BGPmon
periodically injects peer’s route table into the XML RIB-
IN stream. XML RIB-IN event stream is available at live-
bgp.netsec.colostate.edu port 50002.

Also, BGPmon periodically announce XML status mes-
sages to both the update and RIB-IN streams. Status mes-
sages provide additional data about the load of BGPmon
internal functions and summary information of each peer,
for example, number of received BGP messages, prefixes,
attributes and so on.

Router A

Router B BGPmon

Router C

Client

Update stream

RIB-IN stream

Figure 1. Receiving data from BGPmon

3.2 An Example Use

BGPmon clients are able to detect the possible BGP
prefix hijack attacks. For example, suppose ISP A owns
98.158.88/23, 98.158.90/23 and was assigned AS1000. ISP
A would like to monitor its prefixes and moreover, to re-
ceive an alert message when part or all network prefixes
are announced by some misconfigured router with AS2000
number of ISP B (not shown in figure). To do it, ISP A
should be a client of BGPmon and open two TCP connec-
tions to receive RIB-IN and update messages.

Figure1 shows a topology where BGPmon has BGP
peering with three routers: Router A, B and C. Also, BGP-
mon has a client (ISP A). To use the data, ISP A should es-
tablish connection to RIB-IN stream and receive a RIB-IN
table snapshot. By filtering 98.158.88/23 and 98.158.90/23
prefixes and AS paths from snapshot, ISP A may see the
current routing picture how other routers (in our example,
Routers A, B and C) in the Internet are able to reach ISP A
subnets. In particular example, if Routers A,B and C can
reach ISP A, their AS path should end with AS1000 num-
ber.

Next, ISP A should monitor the changes in AS path for
its prefixes in real time. In order to do it, ISP A should es-
tablish a connection to update stream and constantly receive
and filter XML messages. For instance, if some misconfig-
ured router of ISP B will create a BGP announce message
with 98.158.88/23 prefix to Router B (see Figure1), ISP A
will be able to detect the problem easily by looking in AS
path of Router B announce: the last AS number in AS path
will be AS2000. Thus, by filtering real time XML data,
ISP A is able to see precisely when prefix 98.158.88/23 was
announced by malicious ISP B.

This example shows the combination of the freely avail-
able BGPmon data streams can be combined with simple
XML parsing to detect prefix hijacking as well as monitor

2



Denver point

Router A

Router B

Router C

Router A

Router B

Router C

Router D

Router A

Router B

Router C

BGPmon

BGPmon

BGPmon

Your ISP and BGPmon

Los Angeles point

New York point

Figure 2. BGPmon mesh 1.

the status of ISP routes. The data can also be used a num-
ber of other ways and is limited only by the users ability to
parse XML.

4 BGPmon: Deploying Your Own Monitors

While we have endeavored to design a BGPmon that
scales to a large number of peers and clients, we allow BGP-
mon to scale out through the interconnection of multiple
BGPmons. Figure 2 shows example of ISP with different
router locations around the country. Los Angeles and New
York locations has 3 core routers, while Denver location has
4 core routers. All of them runs BGP peering with neigh-
bor peers (not shown in Figure). In this example, we have 3
BGPmon monitors installed in each location. Clients, who’s
interested in live routing data available at New York loca-
tion, should subscribe (open a TCP connection) to BGPmon
in NY area.

Moreover, BGPmon is able to to peer with each other
monitors and form an overlay network (mesh). Figure 3
shows a improved network topology. In our example, we
have added two BGPmon core monitors. All BGPmon in-
stances in three locations monitor a unique set of peers and
forward their events to BGPmon core monitors. Each BGP-
mon core monitors will log the event stream and forward
their events to any clients attached. Clients can subscribe
to BGPmon core monitors and receive a single stream of
routing events happening around the county.

Although BGPmon is able to peer directly with routers,
there are exist other Routing Collectors in the Internet (see
Section 2). BGPmon is able to work with these external
RCs with a few modifications to the RC software. Cur-
rently, Oregon Routeviews[2] collectors provide a routing
data to BGPmon. Figure 4 shows an example, how, early
described ISP network topology, can be modified to receive
routing events from RouteViews. This example describes

Los Angeles point

New York point

Denver point

Router A

Router B

Router C

Router A

Router B

Router C

Router D

Router A

Router B

Router C

BGPmon

BGPmon

BGPmon

Your ISP and BGPmon

BGPmon

BGPmon

Figure 3. BGPmon mesh 2.

Los Angeles point

New York point

Denver point

Router A

Router B

Router C

Router A

Router B

Router C

Router D

Router A

Router B

Router C

BGPmon

BGPmon

BGPmon

Your ISP and BGPmon

BGPmon

BGPmon

Oregon RouteViews
Collectors

Figure 4. BGPmon mesh 3.

how BGPmon enables scalable real-time monitoring data
distribution and create an overlay network (mesh), which
provides a single stream without modifying the monitors.

5 Conclusion

Overall, we believe BGPmon represents an important
change in how BGP route monitoring is accomplished in
the Internet. We hope that the addition of BGPmon will
make it much simpler for researchers and operators to ob-
tain BGP data and the addition of widely available real-
time BGP data will lead to the development of new tools
for better understanding Internet routing. If you would like
to know more about the BGPmon project, please visit our
web page http://bgpmon.netsec.colostate.edu or contact the
public maillist bgpmon@netsec.colostate.edu

3



References

[1] “A border gateway protocol 4 (bgp-4),” http://www.ietf.
org/rfc/rfc4271.

[2] “University of oregon route views project,” http://www.
routeviews.org/.

[3] “Ripe (rseaux ip europens) routing information ser-
vice,” http://www.ripe.net/projects/ris/.

[4] “Mrt routing information export format,” http://www.
ietf.org/internet-drafts/draft-ietf-grow-mrt-11.txt.

[5] “A border gateway protocol 4 (bgp-4),” http://www.ietf.
org/rfc/rfc4271.txt.

[6] “The xml c parser and toolkit of gnome,” http://www.
xmlsoft.org/.

[7] “The expat xml parser,” http://expat.sourceforge.net/.

4

http://www.ietf.org/rfc/rfc4271
http://www.ietf.org/rfc/rfc4271
http://www.routeviews.org/
http://www.routeviews.org/
http://www.ripe.net/projects/ris/
http://www.ietf.org/internet-drafts/draft-ietf-grow-mrt-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-grow-mrt-11.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.xmlsoft.org/
http://www.xmlsoft.org/
http://expat.sourceforge.net/

	Introduction
	Background
	BGPmon: Using the Data
	Receiving Routing Data
	An Example Use

	BGPmon: Deploying Your Own Monitors
	Conclusion

